VEER NARMAD SOUTH GUJARAT UNIVERSITY

B.E.II (Computer Engg.)

Semester – IV

<table>
<thead>
<tr>
<th>Course</th>
<th>Course No.</th>
<th>L Hrs.</th>
<th>T Hrs.</th>
<th>P Hrs.</th>
<th>Duration Hrs.</th>
<th>Marks</th>
<th>Duration Hrs.</th>
<th>Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control System Engg.</td>
<td>ELE 401 CO</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Engineering Mathematics – III</td>
<td>ASH 402 CO</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Engineering Management</td>
<td>EC 403 CO</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Linear Electronics-II</td>
<td>EC 404 CO</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Digital Electronic</td>
<td>EC 405 CO</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Computer Based Information Processing</td>
<td>EC 406 CO</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>18</td>
<td>4</td>
<td>8</td>
<td>-</td>
<td>600</td>
<td>-</td>
<td>120</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>

Total Contact Hours: 30

Total Marks: 900
VEER NARMAD SOUTH GUJARAT UNIVERSITY

B.E.- II (Computer Emgg.)

Semester – IV

CONTROL SYSTEM ENGINEERING : ELE 401 CO

<table>
<thead>
<tr>
<th>Teaching Hours</th>
<th>Lecture</th>
<th>Tutorial</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination Scheme Marks</td>
<td>100</td>
<td>0</td>
<td>Cont. Evaluation : 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Examination : 30</td>
</tr>
</tbody>
</table>

1. Introduction to Control Systems : Open loop control and close loop control; Illustrative examples of control systems.
2. Mathematical Background : Laplace transformation; Laplace transformation theorems; Inverse Laplace transformation; Solution of linear differential equations using Laplace transformation.
3. Mathematical Models of Physical Systems : Linear and non-linear systems; equations and transfer functions for mechanical translational systems and electrical network; Complex impedences; Force-Voltage and Force-Current analogy; Block diagram representation of control systems; Block diagram reduction; Potentiometers and synchros as error-sensing devices; Transfer functions of armature-controlled and field-controlled DC servomotors and 2-phase AC servomotors; DC and AC tachometers; Block diagram representation of DC and AC position control systems; Signal flow graphs; Mason’s gain formula.
4. Time Domain Analysis of Control Systems : Typical test signals; Response of first-order systems; Transient response of a second order system due to step input; Time domain specifications of a second order system; Impulse and ramp response of second order system; Routh’s stability criterion; Steady-state errors; Static error coefficients; Error series and dynamic error coefficients.
5. Frequency Domain Analysis of Control Systems : Steady state response of a system due to sinusoidal input; Frequency response; Logarithmic plots or bode diagrams; Log-magnitude versus phase plots; Resonant peak and resonant frequency of a second order system; Polar plots; Nyquist stability criterion; Stability analysis; Relative stability; Gain margin and phase margin; Closed loop frequency response; M. circles and N. circles; Nichol’s chart.
6. Root Locus Techniques : Basic properties of root Loci; Construction of the root Loci; Effects of adding poles and zeros; Effects of movements of poles and zeros.
7. Compensating Networks : Basic configurations of phase lead; phase-lag and lag-lead networks; their properties, polar and Bode plots for above networks.

Practical work shall be based upon the theory course.

VEER NARMAD SOUTH GUJARAT UNIVERSITY

B.E.- II (Computer Emgg.)

Semester – III / IV

ENGINEERING MATHEMATICS III : ASH 303 EC / ASH 402 CO

B.E.II (EC/CO)

<table>
<thead>
<tr>
<th>Teaching Hours</th>
<th>Lecture</th>
<th>Tutorial</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination Scheme Marks</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Multiple Integrals : Reorientation of concept of integrals, double and triple integrals, evaluation techniques, change of order of integration, integrals in polar and cylindrical coordinates, change of variables of multiple integrals, Application of double and triple integrals for evaluation of area, volume and mass.

2. Vector Calculus : Basic concepts of Vector calculus, line integrals, scalar and vector point functions, differential operator, gradient, directional derivative, divergence, curl and Laplacian with their properties and physical interpretation.

3. Surface integrals, Green's, Gauss and Stokes theorem (without proof), Applications.

4. Gamma, Beta and Error functions : Improper integrals and their convergence, Gamma and Beta functions and their properties, Error functions, Evaluation and application.

5. Fourier Series : Fourier expansion of functions with arbitrary period, in particular periodic functions with period 2π, conditions of convergence, Fourier series of even and odd functions, Half range Fourier series.

7. Complex Variables : Basic mathematical concepts, Analytic functions, C-R equations, Harmonic functions, Related problems; Linear transformations of complex domains, Some special transformations, bilinear transformation, Conformal Mapping and applications; complex integration including contour Integration (Simple cases).

References :

VEER NARMAD SOUTH GUJARAT UNIVERSITY

B.E.- II (Computer Emgg.)

Semester – IV

ENGINEERING MANAGEMENT : EC 403 CO

<table>
<thead>
<tr>
<th>Teaching Hours</th>
<th>Lecture</th>
<th>Tutorial</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination Scheme Marks</td>
<td>100</td>
<td>0</td>
<td>Cont. Evaluation : 00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Examination : 00</td>
</tr>
</tbody>
</table>

Operations Research :
1. Introduction : Evolution of OR, team approach, quantitative approach, application.
2. Linear Programming : Basic concepts, formulation of models, limitations of LP.
 LP Methods : Graphical & Simple Method, Degenercy, multiple optimal solution, unbounded problem, infeasible problem, Transportation problem and transportation models, Assignment problem & assignment method.
3. Decision Theory : Decision making under different situation (certainty, uncertainty, under risk), Decision tree model.
5. Simulation : Analytical and simulation models, Monte Carlo simulation model; Computer simulation.
 (* denotes Poisson arrival, Poisson departure, single server, infinite capacity and FIFO service discipline).

Business Management :
4. Trade Unions and Industrial Relations : Collective bargaining, industrial dispute act, social security measures in India.

References :

1. Negative Feedback In Amplifiers: Basic concepts of feedback amplifiers; Effect on gain; Input and output impedances of feedback amplifiers and sensitivity function; Examples of the basic feedback amplifier analysis; Introduction to its design and its application.

2. Frequency Response Of Amplifiers: R-C coupled amplifier with bipolar transistor; Effect of emitter bypass capacitor; Coupling capacitor of base and collector; Introduction to JFET and MOSFET; Low frequency analysis of FET amplifier; Source bypass capacitor; Drain coupling capacitor and gate coupling capacitor.

3. Audio Frequency Linear Power Amplifiers: Introduction to Class A, B, AB and C operation; Class A common-emitter power amplifier; Transformer coupled amplifier; Class B push-pull power amplifier; Amplifiers using complementary symmetry; Class C amplifier.

4. Voltage Regulators: Voltage regulator circuits; Introduction; Comparison elements and DC amplifier elements; Control Elements; Switch mode voltage regulator; Use of op-amp and Linear IC as voltage regulator elements; Over voltage and short circuit protection; Typical design examples using voltage regulator IC.

5. Operational Amplifiers: Characteristic and specifications of op-amp; Concept of offset voltage and currents; Application of op-amp; Differentiators; Integrators; Function generators; Log amplifiers; Instrumentation amplifiers; Multivibrators; Triangular and square wave generators; Rectifiers and peak detectors; Oscillators; Active filters.

6. Timer IC Circuit And Its Application

Practical work shall be based upon the theory course.

References:
VEER NARMAD SOUTH GUJARAT UNIVERSITY

B.E.- II (Computer Emgg.)

Semester – IV

DIGITAL ELECTRONICS : EC 405 CO

<table>
<thead>
<tr>
<th>Teaching Hours</th>
<th>Lecture</th>
<th>Tutorial</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination Scheme Marks</td>
<td>100</td>
<td>0</td>
<td>Cont. Evaluation : 20</td>
</tr>
<tr>
<td>Examination</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Number Systems : Decimal number system; Binary, octal and hexadecimal number systems; Conversion from one number to another number system; Addition, subtraction, multiplication and division using different number systems; Representation of binary number in sign-magnitude, sign 1's complement and sign 2's complement notation; Rules for addition and subtraction with complement representation; BCD, EBCDIC, ASCII, Extended ASCII, Gray and other codes.

2. Logic Gates And Boolean Algebra : AND, OR, NOT, NAND, NOR, Ex-OR logic gates; Positive and negative logic; Fundamental concepts of boolean algebra; Demorgan's laws; Principles of duality; Simplification of Boolean expressions; Canonical and standard forms for Boolean functions; SOP and POS forms; Realization of Boolean functions using only NAND and NOR gates.

3. Boolean Function Minimization : Objectives of the minimization procedures; Karnaugh map method; Don't care conditions; Quine-McCluskey tabulation method; Concept of prime implicants.

4. Combinational Logic Circuits Using Descrete Logic Gates : Half adder and full adder; Half subtractor and full subtractor; Parity generator and checker; Code converters; Binary multiplier; Majority circuits, magnitude comparator.

5. Combinational Logic Circuit Using Msi Integrated Circuits : Binary parallel adder; BCD adder; Encoder, priority encoder, decoder; Multiplexer and demultiplexer circuits; Implementation of Boolean functions using decoder and multiplexer; Arithmetic and logic unit; BCD to 7-segment decoder; Common anode and common cathode 7-segment displays; Random access memory, Read only memory and erasable programmable ROMS; Programmable logic array (PLA) and programmable array logic (PAL).

6. Introduction To Sequential Logic Circuits : Basic concepts of sequential circuits; Cross coupled SR flip-flop using NAND or NOR gates; JK flip-flop rise condition; Clocked flip-flop; D-type and Toggle flip-flops; Truth tables and excitation tables for flip-flops; Master slave configuration; Edge triggered and level triggered flip-flops; Elimination of switch bounce using flip-flops; Flip-flops with preset and clear.

7. Sequential Logic Circuit Design : Basic concepts of counters and registers; Binary counters; BCD counters; Up down counter; Johnson counter, module-n counter; Design of counter using state diagrams and table; Sequence generators; Shift left and right register; Registers with parallel load; Serial-in-parallel-out(SIPO) and parallel-in-serial-out(PISO); Register using different type of flip-flop; Sequence generator.

Practical work shall be based upon the theory course.

References:
VEER NARMAD SOUTH GUJARAT UNIVERSITY

B.E.- II (Computer Emgg.)

Semester – IV

COMPUTER BASED INFORMATION PROCESSING : EC 406 CO

<table>
<thead>
<tr>
<th>Teaching Hours</th>
<th>Lecture</th>
<th>Tutorial</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination Scheme Marks</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>Cont. Evaluation : 20</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>: 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Introduction To Data Processing : Data Processing Techniques; Traditional Data Processing & Data Base Processing Techniques; DBMS; Data Independence; Shared Data - Advantages of DBMS; Architecture of a typical DBMS; DDLs; DMLs; Query Languages; Embedded Query Languages.

2. Data Base Project Development Process : Information Model; Universe of Discourse; Logical Database Design; Physical Database Design; Semantic Data Model; Relationships in SDM; Other Data Models; DBTG; Hierarchical Model; ER Model; ANSI/X3/SPARC Model; Relational Model; Comparison; Study of DBTG & Hierarchical Model only from comparison point of view; Super keys; Generalization & aggregation.

3. System Flow Study of Commercial Applications like Payroll; Inventory control; Accounting; Sales; University Course Management etc. Implementation issues.

4. Characteristics of secondary storage devices; file organization techniques; Performance of heap; sequential; indexed sequential hashed; multi-indexed; inverted; and multi-ring files B; trees use of files in data processing.

5. Implementation of commercial systems like pay-roll; inventory control etc. with a typical DBMS package.

Practical work shall be based upon the theory course.

References :
