Course : IT 704 : Optimization Techniques

<table>
<thead>
<tr>
<th>Course Code</th>
<th>704</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Optimization Techniques</td>
</tr>
<tr>
<td>Credit</td>
<td>4</td>
</tr>
<tr>
<td>Teaching per Week</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>Minimum weeks per Semester</td>
<td>15 (Including Class work, examination, preparation, holidays etc.)</td>
</tr>
<tr>
<td>Last Review / Revision</td>
<td>June 2019</td>
</tr>
<tr>
<td>Purpose of Course</td>
<td>The purpose of this course is to impart knowledge of various Optimization Techniques.</td>
</tr>
<tr>
<td>Course Objective</td>
<td>To impart knowledge of various Optimization Techniques to solve real world problem.</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>Basic knowledge of Mathematics.</td>
</tr>
<tr>
<td>Course Out come</td>
<td>Students will be able to apply Optimization Techniques for solving real world problems.</td>
</tr>
</tbody>
</table>
| Course Content | **Unit : 1 : Job Sequencing**
 1.1 Processing n jobs through 2 machines
 1.2 Processing n jobs through 3 machines
 1.3 Processing 2 jobs through m machines
 1.4 Processing n jobs through m machines

Unit : 2 : Network Analysis
 2.1 Project Evaluation and Review Technique (PERT)
 2.2 Critical Path Method (CPM)

Unit : 3 : Queuing Theory
 3.1 Essential features of queuing system
 3.2 Performance measurement of queuing system
 3.3 Classification of queuing model
 3.4 Single server queuing model
 3.5 Multi-server queuing model

Unit : 4 : Simulation
 4.1 Simulation Introduction
 4.2 Types of simulation
 4.3 Steps of simulation process
 4.4 Advantages and disadvantages of simulation process
 4.5 Stochastic simulation and random numbers

Unit : 5 : Dynamic programming
 5.1 Dynamic programming
 5.2 Developing optimum decision policy
 5.3 Dynamic programming under certainty
 5.4 Shortest route problem
 5.5 Multiple separable Return function and single additive constraints
 5.6 Additive separable Return function and single additive constraints
 5.7 Additive separable Return function and single multiplicative constraints

3. Introduction to Operation Research Computer Oriented algorithm; B.E. Gillet
4. Operation research an Introduction; H.A. Taha
5. Optimization for Engineering Design, Algorithms and Examples Prentice; Kalyanmoy Deb; Hall of New Delhi, India, 2000
6. PERT and CPM: Principles and Applications; 2nd edition, 1975; Srinath L.S. |
| Teaching Methodology | Lectures, Discussion, Independent Study, Seminars and Assignment |
| Evaluation Method | 30% Internal assessment
70% External assessment |