Diploma in Medical Technology is a one year Post-Graduate (Post B.Sc.) course. A student offering this course will study papers I, II, III and IV and practicals based on these papers.

The teaching per week for 4 papers is 16 hours and there are 16 hours per week for practicals.

The total marks of papers are 280 for University examination, distributed as 70 of each paper of 3 hours duration and the internal evaluation is of 120 marks distributed as 30 of each paper. The total marks of practicals are 210 for University examination distributed as 54 for practical paper I and Practical papers II, III and IV are each of 52 marks. The internal evaluation for practicals is of 90 marks distributed as 24, 22, 22 and 22 for practicals based on paper I, II, III, and IV respectively. The University examination for practicals based on Paper I is of 12 hours, distributed over a period of 2 days and for practicals based on papers I, II, III and IV are of one day each and 6 hours per day.
PAPER – I : MICROBIOLOGY AND IMMUNOLOGY

SECTION – I : MICROBIOLOGY

(1) EVALUATION AND HISTORY OF MICROBIOLOGY

(2) CLASSIFICATION OF MICROGANISMS :

(3) MICOSCOPIC EXAMINTAION OF MICROORGANISMS :
Introduction. Light microscope and Electron microscope. Bright Field microscopy, Dark Field Microscopy, Fluorescence microscopy, Phase contrast microscopy, Electron microscopy. Preparation of microorganism for Light Microscopic examinations; Wet mount and Hanging drop techniques and staining techniques – Simple staining, Gram staining, Acid Fast staining, Metachromatic granules staining, Spore staining, Flagella staining, Negative staining and Silver impregnation method.

(4) CULTIVATION OF BACTERIA :
Nutritional requirements, Nutritional types of Bacteria, Bacteriological media, Physical condition for growth, choice of media and conditions of incubation (Both for aerobic and anaerobic cultures).

(5) PURE CULTURES AND CULTURAL CHARACTERISTICS :
Introduction. Pure culture and mixed culture. Methods of isolating pure cultures, Maintenance and preservation of pure cultures. Culture characteristics – Growth on agar slants, Growth in broth, Growth in stabs; Colony characteristic, characteristic of broth cultures.
(6) STERILIZATION AND DISINFECTION:

(7) CLINICAL SPECIMENS AND IDENTIFICATION OF PATHOGENS:
Collection, transportation, preservation and processing of clinical specimens for (i) Blood Cultures (ii) Urine cultures (iii) Sputum cultures (iv) CSF cultures (v) other body fluids, aspirates, tissues and pus. Isolation and identification of pathogens from clinical specimens. Importance and techniques of antibiotic susceptibility test in vitro. Determination of MIC, MBC and LD50.

(8) BACTERIA OF MEDICAL IMPORTANCE:
[A] Isolation and characterization of following medically important bacteria:
1. Staphylococcus.
2. Streptococcus
4. Haemophilus, Bordetella and Neisseria.
5. Treponema.
7. Corynebacterium.
8. Mycobacterium.

2. Outline of Medical Mycology & Virology.

(9) BIOSAFETY:
Principles of biosafety, decontamination and disposal of wastes.

(10) MOLECULAR PATHOLOGY OF INFECTIOUS DISEASES:
[A] Basic nucleic acid composition and structure, Nucleic acid associated Enzymes, Replication of DNA, Transcription, Post Transcriptional modification, Translation, DNA repair, DNA mutation.

[B] NUCLEIC ACID ANALYSES:
Electrophoretic separation, Nucleic acid Hybridization, Hybridization Assays; Basic components, assay formats, amplification methods, RFLP-Based assays.
(11) [A] Automation in Microbiology

SECTION – II (IMMUNOLOGY)

(1) IMMUNOLOGY:
Introduction, definition of the terms: Immunity, antigen, antibody, immunogen, hapten, epitopes (antigenic determinants).

(2) IMMUNITY:

(3) ANTIGEN:
Introduction. Types – immunogens and haptens, heterophile and frossman antigen, antigenic determinants, immunogenicity.

(4) ANTIBODY:
Structure and diversity of antibody, monoclonal antibodies and their production. Polyclonal antibody antigen – antibody reactions and their applications.

(5) COMPONENTS OF IMMUNOSYSTEM:
Phagocytic cells, T cells and B Cells.

(6) HYPERSENSITIVITY:
Introduction and classification of hypersensitivity, immediate and delayed hypersensitivity, anaphylactic reactions, tests for hypersensitivity.

(7) AUTOIMMUNITY:
Basic concepts of autoimmunity. Detection methods (IFM Indirect Immuno Fluorescence Organ specific autoantibodies diseases and examples microscopy)

(8) VACCINES:
Introduction, major vaccine production, potency testing and clinical importance. Distribution and storage of vaccine.
(9) INVITRO SEROLOGICAL TESTS:

(i) Immunological techniques: Radial immunodiffusion, Immunelectrophoresis. Counterimmunelectrophoresis.
(ii) Agglutination tests: Tube test, agglutination microscopic and macroscopic tests.
(iii) Precipitation tests: The ring test, Agar diffusion methods.
(iv) Complement Fixation tests: The Wasserman test.
(v) Other Serological Tests: Fluorescent – antibody technique, Hemagglutination test, Immunochromatographic test and Lateral Flow through assays,
(vi) Introduction to Enzyme linked immunosorbent assay (ELISA), RIA, Dot immunoassay.
(vii) Diagnosis of HIV, HBV, HCV and other viral diseases.

REFERENCE BOOKS:

05. Bailley and Scott’s Diagnostic Microbiology, Sydney m. Finegold and Ellen Jo Baron, 7th ed., The C.V.Mosby Co.
07. Practical Medical Microbiology, Collee Duguid, Fraser, Marmion, 24th Ed., Churchill Livingston.
18. Clinical Diagnosis and Management by laboratory methods.
REVISED SYLLABUS OF DIPLOMA IN MEDICAL TECHNOLOGY
(EFFECTIVE FROM JULY 2008)
PAPER – II CLINICAL PATHOLOGY & PARASITOLOGY

SECTION-I – CLINICAL PATHOLOGY

1. URINE ANALYSIS:
 (1) Physiology of urine formation
 (2) Composition of urine
 (3) Collection of urine
 (4) Routine examination Physical, Chemical and Microscopic
 (5) Correlation of urinary findings in various diseases.
 (6) Pregnancy Test
 (7) Analysis of urinary calculi.

2. STOOL ANALYSIS
 (1) Collection
 (2) Routine examination, physical, chemical & Microscopic
 (3) Correlation & significance in various disease.
 (4) HIV related Diarrhea.

3. CEREBROSPINAL FLUID:
 (1) Formation of C.S.F.
 (2) Collection & its technique
 (3) Normal composition.
 (4) Physical, Chemical & Microscopic examination India Ink Test & its significance.
 (5) Correlation of Abnormal C.S.F. findings in various diseases.

4. SPUTUM ANALYSIS
 (1) Anatomy & Physiology of Respiratory system
 (2) Collection of sputum
 (3) Physical, Microscopic and Bacteriological examination.
 (4) Detection of AFB by (a) Direct (b) Concentrated & (c) By Immunofluorescence Technique.

5. EXAMINATION OF BODY FLUID:
 (1) Collection of Pleural, Peritoneal & Pericardial fluids.
 (2) Physical, Chemical & Microscopic examination and its significance.
 (3) Transudate & Exudate
 (4) Collection, examination and significance of Synovial fluid.
5.(A) Histopathology techniques-Routine & special stains, Museum-Technique specimen preservation
 (1) Microtomes-types, Tissues processing technique cryotome
 (2) Fixatives cleaning agents
 (3) Automation in histo pathology-tissue processors cryotome
 (4) Sample preparation-glossing techniques
 (5) H & E stains special stains & FNAC, Cytopathology- Technique, staining methods.

6.(A) SEMEN ANALYSIS :
 (1) Anatomy & Physiology of male reproductive system.
 (2) Formation of semen
 (3) Collection
 (4) Physical, Chemical & Microscopic examination
 (5) Spermatozoa count
 (6) Oligospermia, Azospermia & Abnormal forms of spermatozoa
 (7) Medico-legal significance of semen examination.

6.(B) Laboratory Management of Assisted Reproductive Technology conventional in vitro fertilization, Outcome of IVF and ICSI procedures Genetic counselling, Sperm wash, Prenatal diagnosis and congenital Malformations.

7. GASTRIC ANALYSIS :
 (1) Anatomy & Physiology of Stomach
 (2) Significance & diagnostic importance of gastric secretions in various clinical conditions.

SECTION – II PARASITOLOGY

1. PROTOZOA :
 Introduction. Classification and study of individual Protozoa.
 (i) Entamoeba histolytica
 (ii) Giardia lamblia
 (iii) Leishmania donovani
 (iv) Plasmodia & its different species. P.Vivax, P.falciparum, P.ovale, P.malaria.
 (v) Toxoplasma gondii
 (vi) Pneumocystis carinii
 (vii) Trichomonas
2. CESTODES:
Introduction. Classification and study of individual Cestodes.
(i) Diphyllobothrium latum
(ii) Taenia saginata
(iii) Taenia solium
(iv) Echinococcus granulosus

3. TREMATODES:
Introduction, classification & study of individual trematodes Schistosoma haematobium, Schistosoma mansoni and Schistosoma japonicum

4. NEMATODES:
Introduction, classification and study of individual Nematodes.
(i) Intestinal Nematodes:
 Ascaris lumbricoides, Ancylostoma duodenale, Necator Americans, Strongyloides stercoralis, Trichinella spiralis, Trichuris trichuria, Enterobius vermicularis.

(ii) Somatic Nematodes:
 Wucheria bancrofti, Wucheria malayi, Dracunculus medinesis.

REFERENCE BOOKS:

05. A Handbook of Clinical Pathology, Chakraborty & Bhattacharya & Bhattacharya, Academic Publisher.
06. Parasitology, K.D.Chatterjee, Chatterjee Medical Publishers.
REVISED SYLLABUS OF DIPLOMA IN MEDICAL TECHNOLOGY
(EFFECTIVE FROM JULY 2008)
PAPER – III HAEMATOLOGY & BLOOD BANKING

SECTION-I – HAEMATOLOGY

1. INTRODUCTION:
 (a) Collection of Blood Samples for Haematological studies
 (b) Types of Anticoagulants
 (c) Capillary blood, venous blood & Storage of samples

2. HAEMATOLOGICAL TESTS:
 (a) Haemoglobin estimation
 (b) Red Blood Cell, White Blood Cell count-counting fluids-preparation, function
 (c) Study of peripheral smear, differential WBC count, Morphology of Red Blood Cells, Romanowsky stains, staining procedures, preparation of Stains, artifacts & troubleshooting
 (d) Absolute Eosinophil count, various stains, procedures

3. ERYTHROCYTE SEDIMENTATION RATE:
 (a) Methods for measurement of ESR, Normal values, its significance
 (b) C-Reactive Protein
 (c) Osmotic fragility test-fluid preparation
 (d) Haematocrit (PCV), Absolute Blood indices

4. PHYSIOLOGY OF BLOOD FORMATION:
 (a) Normal Erythropoiesis
 (b) Leucopoiesis
 (c) Formation & Functions of Blood Platelets

5. ANEMIAS:
 (a) Definition & Classification of anemias
 (b) Iron & B-12 deficiency anemias
 (c) Anemias of chronic disorders & Aplastic anemias
 (d) Haemolytic anemia / sideroblastic anemias
 (e) R.B.C. metabolism & G-6-PD deficiency anemias
 (f) Polycythemia
6. HAEMOGLOBINOPATHIES:
(a) Structure of Haemoglobin molecule
(b) Types of normal Haemoglobins
(c) Abnormalities of Haemoglobin molecule
(d) Sickle Cell anemia
(e) Thalassemia, Alkali Denaturation Test HPLC-principle Technique & Electrophoresis types buffer-preparation for, procedure, trouble shooting, sickling test.

7. BONE-MARROW STUDY:
(a) Sites of Bone Marrow Collection, Technique & Indications
(b) Examination of Bone Marrow Slides
(c) Normal values & Reporting

8. LEUKEMIAS:
(a) Definition, Classification of Leukemias
(b) Acute & Chronic Myeloid Leukemias
(c) Cytochemical reaction

9. BLOOD COAGULATION:
(a) Mechanism of Blood Coagulation
(b) Bleeding time / Clotting time / Clot retraction
(c) Thrombin Time / Prothombin Time / Prothombin consumption test coagulometer principle, procedure
(d) Coagulation disorders, Haemophilia A & Haemophilia B
(e) Platelet disorders

10. Automation in hematology-Analysers-principle, procedure, drawbacks, trouble shooting.

SECTION – II BLOOD BANKING

1. PRINCIPLES OF IMMUNOHAEMATOLOGY

2. BLOOD GROUP SYSTEM – 1:
(a) ABO Blood Group system, subgroup of ABO, Variants in the ABO blood group system.
(b) Rh Blood Group system
(c) Serological techniques for detection of ABO and Rh antigens
(d) Gel technique for Blood-grouping & Serological techniques
3. COMPATIBILITY TESTING:
 Compatibility testing and special methods of routine and emergency crossmatch, Trouble shooting in grouping and cross matching.

4. BLOOD GROUP SYSTEM – II:
 Other blood group system, Importance of atypical antibodies, their detection and clinical significance.

5. HAEMOLYTIC DISEASE OF THE NEWBORN:
 Haemolytic disease of the newborn due to ABO incompatibility, Rh incompatibility and other blood group incompatibility. Comb’s rests-principle type, procedure, ndicators, pitfalls

6. BLOOD COLLECTION:
 Screening of Donor, Blood collection, Storage and transportation of blood, Component preparation: Red cell concentrate, Washed red cells, FFP. Cryoprecipitate, Platelet concentration.

7. TRANSFUSION REACTION:
 Types of transfusion reactions, Investigation of transfusion reaction.

8. Automation and biosafety in Blood Banking

REFERNECE BOOKS:

2. Immunohaematology, C.M.Zmijewski, Printece Hall of India.
3. Haematological Laboratory Methods, Edited by E. Merk
REVISED SYLLABUS OF DIPLOMA IN MEDICAL TECHNOLOGY
(EFFECTIVE FROM JULY 2008)
PAPER – IV CLINICAL BIOCHEMISTRY

SECTION-I – INTRODUCTION

1. GENERAL LABORATORY TECHNIQUES:
Important properties of water, balances and weighing, units of measurements, characteristics and concentration of solution, dilution of solution. Law of mass action, ionization in aqueous solution, \(\text{H}^+ \) concentration and pH, Acid and Base, Buffers and Buffer action, Indicators. Osmosis and Osmotic pressure. Biochemistry Mathematics. Safety in the Clinical Laboratory.

2. QUALITY CONTROL:

3. ANALYTICAL PROCEDURE AND INSTRUMENTATION:

4. AUTOMATION. Principles. Applications

5. INFORMATION, IMAGING & INTEROPERABILITY.
Clinical Informatics, Laboratory information processing, Emergence of the world wide web, Image acquisition technology, Image rendering technology, Image interoperability

SECTION – II BIOCHEMISTRY

6. BIOCHEMISTRY AND ROUTINE BIOCHEMICAL TESTS:
(a) Carbohydrates: - Introduction, classification of carbohydrates, intermediate metabolism of blood glucose, determination of blood glucose and urine glucose, GTT, diabetes, hypoglycemia and hypoglycemia effect of hormones on blood glucose, insulin tolerance test and cortisone load test.
(b) Proteins :- Introduction, classification, functions of plasma protein, determination of protein, immunoglobulins and their classification, clinical significance of plasma proteins.

7. ELECTROLYTES AND BLOODGASES :

8. BIOCHEMICAL TEST :
Liver function Tests, Renal Function Tests, Pancreatic function tests and Cardiac function tests. New tests for Myocardial injury :- Myoglobin, Troponin I, Troponin T, Glycogen phosphorlase BB isoenzyme. Biochemical measurement of Bone turnover, vitamin D PTH Calcium , Magnesium PO4 calcitonin ALP Osteocalcin Hydroxy-proline. TUMOURMARKERS

9. ENZYMES :-
Introduction of enzymes, as catalysts, nomenclature, classification, factors effecting the rate of enzyme reactions, Enzymes Kinetics, Enzyme assays in Clinical Biochemistry, Conventional methods and kinetic methods and their clinical significance for Phosphatases, Transaminases, Lactic dehydrogenesis, Creatine kinase, Amylase and Gama Glutamyl transferase.

10. HORMONES :-
Introduction to Thyroid and parathyroid hormones, Adrenal hormone, Pituitary hormones and sex hormones. Renin-Aldosterone axis :- Renin & Hypertension, Aldosterone measurements Renin measurement, Angiotensin-converting Enzyme activity.

11. Toxicology and Therapeutic Drug Monitoring.
Basic technique for detecting drugs in serum and urine Immunochemical methods, Drug binding to Antibodies, Chromatographic technique, Screening for Drugs of Abuse.

12. Bioethics and ethical principles
REFRENCE BOOKS :-

5. Medical Laboratory Technology – Methods and Interpretation. Sood, 4th ed., Jaypee Brother.
11. Fundamental of Clinical Chemistry, 4th ed, edited by N.W.Tietz, W.B. Saunders Company.
Diploma in Medical Technology is a One year Post-Graduate (Post B.Sc.) course. A student offering this course will study Papers I, II, III, & IV and practicals based on there papers.

The teaching per week for 4 papers are 16 hours and there are 16 hours per week for practicals.

The total marks of Practical are 210 for University examination distributed as 54 for Practical paper I and practicals papers II, III and IV are each of 52 marks. The internal evaluation for practical is of 90 marks distributed as 24, 22, 22 & 22 for practical based on paper I, II, III & IV respectively. The university examination for practical based on paper I is of 12 hours distributed over a period of 2 days & for practicals based on paper II, III and IV are of one day each and 6 hours per day.
MICROBIOLOGY :

2. Examination of Living Bacterias.
 a) Hanging drop technique
 b) Semisolid stab agar test
3. [A] Staining of the bacterial cell:
 a) The simple stain
 b) The Negative stain
[B] Differential staining
 a) The Gram staining
 b) The Acid Fast staining
[C] Special Staining
 a) The Spirocheate staining
 b) The Metachromatic staining
 c) The Spore staining
 d) The Capsule staining
 e) The Flagella staining
4. Study of some important biochemical reactions.
 a) Indole Test
 b) Methyl red Test
 c) V.P. Test
 d) Citrate Utilization Test
 e) Nitrate Reduction Test
 f) Fermentation of Sugars
 g) H2S Production (2% Peptone)
 h) Study of TSI slants with different bacteria
5. Preparation of Media, pH adjustment and preparation of buffers

[A] Bacteriological Media
 a) Neutrient agar
 b) MacConkey’s agar
 c) EMB agar
 e) CLED Medium for Urinary Tract Infection
 f) King’s Medium for Pseudomonas Sp.
 g) Mannitol salt agar for Staphylococcus sp.
B] Mycological Media
 a) Potato-dextrose agar
 b) Glucose Yeast Extract agar
 c) Sabourads agar

6. Study of Enzymatic activity of bacteria
 a) Gelatinase
 b) Lipases
 c) Oxidase
 d) Catalase
 e) Phenylamine deaminase
 f) Dehydrogenase
 g) Decarboxylase
 h) Coagulase
 i) Urease
 j) Dehydratase

7. Isolation and identification of aerobic and anaerobic bacterial / pathogens from pathological specimens.

8. PURE CULTURE STUDY OF THE FOLLOWING CULTURES
 (i) Bacillus cereus
 (ii) Staphylococcus aureus
 (iii) Staphylococcus enteritidis
 (iv) Escherichia coli
 (v) Enterobacter aerogenes
 (vi) Klebsiella pneumonia
 (viii) Proteus vulgaris
 (ix) Salmonella typhi / paratyphi A / paratyphi B
 (x) Shigella dysenteriae / shiga / sonnei / flexneri
 (xi) Pseudomonas aeruginosa

IMMUNOLOGY

[A] Major diagnostic tests
 1. Widal tube agglutination test (Quantitative analysis)
 1. Dot Immunoassay for tuberculosis
 2. Dot Immunoassay for HIV
 3. VDRL Quantitative test for Syphilis
 4. Flow Through assay for HIV and HCV
 5. Hepatitis surface antigen detection by ICT
6. Tuberculosis ELISA IgG IgM
7. Leptospirosis ICT (Demonstration)
8. Typhi Dot
9. Signal TP Flow through spot/Immunodot for syphilis
10. Chikungunya ICT (IgG IgM) (Demonstration)
11. Adenine deaminase for Mycobacterium tuberculosis
12. Western Blot for HIV (Demonstration)

[B] Minor diagnostic test
1. Latex test for Rheumatoid Arthritis
2. Latex test for pregnancy
3. Slide test (Trust) for syphilis
4. Slide test (RPR) for syphilis
5. VDRL Quantitative test for syphilis
6. Slide / strip / cassette / test for Hepatitis
7. Slide / strip / cassette / test for pregnancy
8. Widal slide agglutination test (qualitative)
9. Immunochromatography test for pregnancy
10. Mantoux test
11. C-Reactive Protein test hsCRP
12. ASO test

REFERENCE BOOKS :
4. Hand Book of Medical Laboratory Technology, Bharucha, Meyerm, Mody, Carman.
PRACTICALS BASED ON PAPER – II

CLINICAL PATHOLOGY:

1. Urine Analysis – Physical, Chemical, Microscopic, and Microbiological examination.
2. Stool Analysis - Physical, Chemical, Microscopic, and Microbiological examination.
3. Cerebrospinal Fluid - Physical, Chemical, Microscopic, and Microbiological examination.
5. Gastric analysis – Chemical examination of gastric juice.
7. Body fluids – Physical, Chemical and Microscopic examination.
8. Cutting, fixation, and processing of tissues. Staining – (i) Haematoxyline and eosin for paraffin sections (i) PAP Stain for cytology
9. Para Hit total (dipstick)
10. Para Hitf (dipstick)
11. Toxoplasmosis EIA

PARASITOLOGY

12. Laboratory study of parasites present in stool, urine, blood, and sputum.

REFERENCE BOOKS:

4. Hand Book of Medical Laboratory Technology, Bharucha, Meyerm, Mody, Carman.
PRACTICALS BASED ON PAPER – III

HAEMATOLOGY:

01. Methods of blood collection.
02. Haemoglobin estimation – Sahli’s method and Cyanmethaemoglobin method.
03. Total R.B.C. and W.B.C. count.
04. Differential count.
05. Packed cell volume / determination of haematocrit.
06. E.S.R.
07. Platelet count.
09. Reticulocyte count.
11. Preparation of various stains & reagents for Haematology test
 12. Foetal haemoglobin determination
 13. Sickling test
 14. Test for L. E. cells
 15. Cytochemical Tests- Peroxidase test, PAS stain Sudan Black B stain, Iron stain
 only stain preparation technique.
 16. G6PD deficiency estimation
 17. Haemoglobin electrophoresis – Demonstration
 18. A N A

BLOOD BANKING:

19. ABO Cell grouping and Serum grouping by slide and tube methods
20. Rh typing various techniques
21. Anti A/ Anti B titre
22. Anti D titration by albumin and indirect antiglobulin technique
23. Test for HBs Ag (Hepatitis B surface antigen) ELISA and Rapid Test)
24. Test for HIV antibodies (ELISA & Rapid test)
25. a. Cross matching procedures
 b. Direct antiglobulin (coomb’s) test

REFERENCE BOOKS:-

2. Text Book of Medical Laboratory Technology, P. B. Godkar, 1994, Bhalani Publishing House, Mumbai
4. Handbook of Medical Laboratory Technology, Bharucha, Meyerm, Mody, Carman
7. Collection and Handling of Laboratory Specimens- A practical guide, 1983, Editor T. M. Slockbower and T. A. Bhumenfeld, J. B. Lippincott Company, USA
PRACTICALS BASED ON PAPER – IV

INSTRUMENTATION:-

1. OPERATION OF pH meter, Colorimeter, Single pan balance, ad spectrophotometer Demonstration of Flame photometer, Densitometer, Autoanalyser, Electrophoresis and Gamma counter.

CLINICAL BIOCHEMISTRY:-

2. Blood Glucose/ Sugar estimation and GTT
3. Blood /Urine Urea
4. Blood / urine Creatinine
5. Blood Uric acid
6. Blood Cholesterol- Free and Total HDL Cholesterol, LDL Cholesterol
7. Blood Total Lipid
8. Blood Bilirubin
9. SGPT
10. SGOT
11. Serum Acid Phosphatase
12. Blood HDL Cholesterol
13. Serum Alkaline Phosphatase
14. Serum Amylase
15. Serum Total Protein and Serum Albumin and A/G ratio
16. Serum LDH, Serum Iron and TIBC (Total Iron Binding Capacity) and serum Chloride
17. Serum Triglycerides
18. Urea and Cretinine clearance test
19. Serum Electrolytes
20. Modern methods in Blood Analysis
21. Function test of Liver, Kidney and Cardiac
22. Serum Protein electrophoresis and Lipoprotein in electrophoresis Demonstration only
23. Cardiac Troponin T
24. Cardiac Troponin I
25. T3 T4 TSH ELISA (Demon satation)
26. Serum Lipase
27. Microalbuminuria
28. Serum Calcium/Ionized Calcium
29. Inorganic phosphorus
REFERENCE BOOKS

2. Text Book of Medical Laboratory Technology, P. B. Godkar, 1994, Bhalani Publishing House, Mumbai

4. Handbook of Medical Laboratory Technology, Bharucha, Meyerm, Mody, Carman

6. Collection and Handling of Laboratory Specimens- A practucak guide, 1983, Editor T. M. Slockbower and T. A. Bhumenfeld, J. B. Lippincott Company, USA