

AD-2947

First Year B. Sc. (Sem. II) Examination March/April - 2015 Applied Physics: Paper - II

Time: 2 Hours]	[Total Marks : 50
Instructions:	
(1)	0 (1)
નીચે દર્શાવેલ 👉 નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fillup strictly the details of 👉 signs on your answer book. Name of the Examination :	Seat No. :
FIRST YEAR B. SC. (SEM. II)	
Name of the Subject :](
◆ APPLIED PHYSICS : PAPER - II	
Subject Code No.: 2 9 4 7 - Section No. (1, 2,): Nil	Student's Signature

- (2) Draw neat diagrams wherever necessary.
- (3) Symbols used in question paper have their conventional meanings.
- (4) Numbers on right indicate full marks of the question.

Constants

- (1) speed of light (in vacuum) $C = 3 \times 10^8$ m/sec
- (2) Planck's constant $h = 6.626 \times 10^{-34} \text{ JS}$
- (3) Mass of the electron $m_e = 6.1 \times 10^{-31} \text{ Kg}$
- (4) Charge of the electron $e = 1.6 \times 10^{-19} \text{ C}$
- (5) Bolztmann constant = $8.6 \times 10-5 \text{ eV/K}$
- 1 Answer the following questions in short

14

- (i) What is the difference between photography and holography?
- (ii) Define ampere.
- (iii) What is neutral temperature?
- (iv) Define ampere.
- (v) Why center is dark in the case of Newton's rings obtained by reflected light.
- (vi) Write equation for the fringe width in the case of light reflected by wedge shaped film.
- (vii) Write the unit of magnetic induction B.

AD-2947] 1 [Contd...

Newton's rings. OR (a) Explain recording of hologram and reconstruction of image. 8 (b) A glass wedge of angle 0.01 radian is illuminated by 4 monochromatic light of wavelength 6000 A° falling normally on it. At what distance from the edge of the wedge will the 8th fringe be observed by reflected light? Newton's rings are observed in refracted light of 4 $\lambda = 6000 \text{ A}^0$.The diameter of the 8th dark ring is 0.47 cm. Find the radius of curvature of the lens and the thickness of the air film. 3 Explain detail some properties of the magnetic 8 (a) induction B. 8 OR (a) Describe the construction and working of moving coil 8 galvanometer. Show that with the additional resistance it can be used as an ammeter and voltmeter. A uniform surface charge density σ exist on a sphere 4 of radius "a". Calculate the equivalent dipole moment if the sphere is rotating with angular velocity o about the diameter. OR A particle having charge 8.5 µc enter perpendicular 4 (b) with velocity of 4750 m/s into the magnetic field of 1.25 Tesla .Calculate the force on the particle. Write short notes (any two) **12** 4 Seebeck effect Thomson effect (a) (b) Thermocouple Newton's ring with reflected light. (c) (d)

Obtain the equation for refractive index of liquid using

8

2

(a)