Answer the following: (any two)

1. Write Lagrange’s auxiliary equation of
 \[z(2^2 - xy)(px - qy) = x^4. \]
2. Eliminate the arbitrary constants \(a \) and \(b \) from
 \[z = (x^2 + a)(y^2 + b). \]
3. Obtain complete integral of \(p + q = pq \).
4. Eliminate the arbitrary function \(F \) from \(z = F(x^2 + y^2) \).
5. Find complementary function of \((D^2 - 7DD' + 6D'^2)z = 0 \).
6. Find \(\frac{1}{(D - D')} e^{x+y} \).
7. Solve: \((D + 3D' - 2)z = 0 \).
8. Find particular integral of \(\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = \cos x \cdot \cos xy \).
Answer the following: (any two)

1. Obtain the partial differential equation by eliminating arbitrary constants a, b and c from

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 10 \]

2. Solve:

\[\frac{dx}{x(y^2+z)} = \frac{dy}{y(x^2+z)} = \frac{dz}{z(x^2-yz)} \]

3. Solve:

\[x(y^n-z^n) p + y(z^n-x^n) q = z(x^n-y^n) \]

4. Obtain the partial differential equation by eliminating arbitrary function \(\phi \) from:

\[lx + my + nz = \phi(x^2 + y^2 + z^2) \]

Answer the following: (any two)

1. Explain the method to solve

\[F(p, q) = 0. \]

2. Solve:

\[z^2(p^2 + q^2 + 1) = c^2 \]

3. Solve:

\[p^2 + q^2 = x + y \]

4. Solve:

\[9(p^2 z + q^2) = 4 \]

Answer the following: (any two)

1. In usual notations, prove that:

\[\frac{1}{f(D, D')} e^{ax+by} = \frac{1}{f(a, b)} e^{ax+by} \cdot f(a, b) \neq 0 \]

where \(f(D, D') = D^2 + K_1 DD' + K_2 D'^2 \)

If \(f(a, b) = 0 \) then what can you say about particular integral?
(2) Solve :
\[r - 45 + 4t = e^{2x+y} \]

(3) Solve :
\[\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^2y \]

(4) Solve :
\[\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = y \cdot \cos x \]

5 Answer the following: (any two) 10

(1) Obtain Monge’s equations for
\[y^2r - 2ys + t = p + 6y \]

(2) Solve :
\[(D^2 + 2DD' + D'^2 - 2D - 2D')2 = \sin(x + 2y) \]

(3) Solve :
\[(D - D' - 1)(D + 2D' - 3)z = 4 + 3x + 6y \]

(4) Solve :
\[(D^2 - DD' + D' - 1)z = \cos(x + 2y) \]