DMM-3101
Second Year B. Sc. (Sem. - IV) Examination
March/April – 2016
MCS-403 : Differential Equations-II
(Mathematics for Comp. Sc.)
(New Course)

Time : Hours\ [Total Marks :

Instructions :

(1) Fill up strictly the details of signs on your answer book.

Seat No. :

Second Year B. Sc. (Sem. - IV)
Name of the Subject :
MCS-403 : Differential Equations-II (New)
Subject Code No. : 3101 Section No. (1, 2,...,): Nil

Student's Signature

(2) All questions are compulsory.

(3) Figures to the right indicate full marks.

1 Attempt any five :

(1) Find the general solution of \(\frac{d^2 y}{dx^2} + 4y = e^x \).

(2) Obtain C.F. of \(\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + 3y = 0 \).

(3) Convert \(x^2 \frac{d^2 y}{dx^2} - 5x \frac{dy}{dx} + 9y = x^5 \) into linear different equation with constant coefficient.

(4) Eliminate the arbitrary function from \(z = e^{xy} \phi(x-y) \).

(5) Solve \(25r - 40s + 16t = 0 \).

(6) Solve \(\frac{\partial^4 z}{\partial x^4} - \frac{\partial^4 z}{\partial y^4} = 0 \).

(7) Find C.F. of \((D^3 - 2D^2 D' + DD'^2) z = 0 \).

(8) Solve \(z = px + qy + pq \).
2 (a) Describe the method of finding the P.I. of
\[f(D)y = \sin ax, \quad \text{where} \quad D = \frac{d}{dx} \text{ and} \]
\[f(D) = D^n + P_1 D^{n-1} + \ldots + P_n(P_1, P_2, \ldots, P_n \in R)\phi(-a^2) \neq 0. \]

OR

(a) Describe the method of finding general solution of
\[n! m^n y = \frac{d^n y}{dx^n} + P_1 x \frac{d^{n-1} y}{dx^{n-1}} + \ldots + P_n x^n y = X(x). \]

(b) Solve any two:

1. \[\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + 3y = x^2 + 4x \]
2. \[\frac{d^4 x}{dx^4} + 2 \frac{d^2 y}{dx^2} + y = x^2 \cos x \]
3. \[x^2 \frac{d^2 y}{dx^2} + 5x \frac{dy}{dx} + 4y = x^4 \]
4. \[(x + a)^2 \frac{d^2 y}{dx^2} - 4 (x + a) \frac{dy}{dx} + 6y = x. \]

3 (a) Describe Lagrange’s method to solve liner partial
Different equation of the first order.

OR

(a) Form the P.D.E. by eliminating an arbitrary function \(\phi \)
from the relation \(\phi(u, v) - 0 \); where \(u \) and \(v \) are functions
of \(x, y \) and \(z \).

(b) Attempt any two:

1. Solve \((x + 2z)p + (4zx - y)q = 2x^2 + y \)
2. Solve : \(xzp + yzq = xy \)
3. From the partial Different using the relation
\[z = (x + a)(y + b). \]
4. Eliminate the arbitrary function \(f \) and \(\phi \) from
\[z = f(ax + by) + \phi(ax - by). \]
4 (a) Discuss the method of solving partial Different from the following: (any one)

(1) \(f(z, p, q) = 0 \),
(2) \(f_1(x, p) = f_2(y, a) \).

(b) Solve any two:

(1) \(p^2 + q^2 = n^2 \)
(2) \(z = px + qy + \log pq \)
(3) \(z = pq \)
(4) \(q = p + x - y = 0 \)

5 (a) Discuss the rules for evaluating \(\frac{1}{F(D, D')} \phi(ax + by) \)

where \(F(a, b) = 0 \).

OR

(a) Discuss the general method of finding the particular integral of the equation \((D - mD')z = f(x, y) \).

(b) Solve any two:

(1) \(\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y \)
(2) \((D^2 - 2DD' + D'^2)z = e^{x+2y} \)
(3) \(r - 2s + l = \sin(2x + 3y) \)
(4) \((D^2 - 6DD' + 9D'^2)z = 12x^2 36xy \).