1 Answer any FIVE of the following: 10

(1) Define: Zero divisor with an illustration.

(2) Give an example of a ring having 2016 elements. Is it a field? Why?

(3) If \(R \) is a ring, then for all \(a, b \in R \), prove that \(a(-b) = -(ab) \).

(4) Which of the rings \(\mathbb{Z}_{18} \) and \(\mathbb{Z}_{19} \) are integral domains? Why?

(5) If \(U \) is an ideal of a ring \(R \) and \(1 \in U \) then prove that \(U = R \).

(6) Define: Euclidean Domain.
(7) Let R be a Euclidean ring R and $\pi \in R$ is a prime element. If $\pi | ab$, $a, b \in R$ then show that $\pi | a$ or $\pi | b$.

(8) Find all the associates of $\overline{4}$ in J_6.

2 Answer any TWO of the following:

(1) Prove that any finite integral domain is a field.

(2) If p is a prime number, then prove that J_p, the ring of integers modulo p is a field.

(3) Let R be the set of integers mod 7 under the addition and multiplication mod 7 defined as follows:

$\overline{i} + \overline{j} = \overline{k}$; where k is the reminder of $i + j$ on division by 7, and $\overline{i} \cdot \overline{j} = \overline{m}$; where m is the reminder of ij on division by 7.

Prove that R is a commutative ring.

(4) Prove that any field is an integral domain.

3 Answer any TWO of the following:

(1) Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then prove that R is a field.

(2) If $\phi : R \rightarrow R'$ is a homomorphism with kernel $I(\phi)$ then prove that $I(\phi)$ is an ideal of R.

(3) If R is a ring with unit element 1 and ϕ is a homomorphism of R onto R', then prove that $\phi(1)$ is the unit element of R'.

(4) Let U be an ideal of R. Let

$r(U) = \{x \in R / xu = 0, \text{ for all } u \in U\}$. Prove that $r(U)$ is an ideal of R.

[Contd...]

DRR-3249] 2
4 Answer any TWO of the following:

(1) Let R be a Euclidean domain and let A be some ideal of R. Then show that there exists an element \(a_0 \in A \) such that A consists exactly of all \(a_0x \); as \(x \) ranges over R.

(2) Let R be a Euclidean ring. Then prove that any two elements \(a, b \in R \) always have a greatest common divisor \(d \) and \(d = \lambda a + \mu b \); for some \(\lambda, \mu \in R \).

(3) Explain what do you mean by unit in a commutative ring. Prove that a Euclidean ring always possesses a unit element.

(4) If R is an integral domain with unit element and if \(a, b \in R \), then find the relation between \(a \) and \(b \) when both \(a|b \), \(b|a \) are true.

5 Answer any TWO of the following:

(1) Let R be a Euclidean ring and \(a_0 \) is a prime element of R. Prove that \(A=(a_0) \) is a maximal ideal of R.

(2) Let R be a Euclidean ring. Prove that every element in R is either a unit in R or can be written as the product of a finite number of prime elements of R.

(3) In a Euclidean ring prove that any two greatest common divisors of two given elements are associates.

(4) Prove that a necessary and sufficient condition that the element \(a \) in the Euclidean ring be a unit is that \(d(a) = d(1) \).