(1) Check the linearity of the map \(T : V_2 \rightarrow V_1 \) defined by
\[T(x, y) = x^2 + y^2. \]

(2) Let \(T : U \rightarrow V \) be a linear map. Then prove that
\[T(-u) = -T(u), \] for every \(u \in U. \)

(3) Define : Null space and Nullity of a linear map.

(4) Find \(R(T) \); for the linear map \(T : V_2 \rightarrow V_2 \) defined by
\[T(e_1) = (0, 0) \] and
\[T(e_2) = (0, -1). \]
(5) Prove that the linear map \(T : V_2 \rightarrow V_2 \) defined by
\[T(e_1) = e_2 \quad \text{and} \quad T(e_2) = e_1 - e_2 \]
is one-one.

(6) Let \(T : U \rightarrow V \) and \(S : V \rightarrow W \) two linear maps. If \(ST \) is onto, then prove that \(S \) is onto.

(7) In an inner product space \(V \), prove that, \(u \cdot 0 = 0 \), for every \(u \in V \).

(8) Define: Orthogonal Vectors in an inner product space. Give an illustration of orthogonal vectors in the inner product space \(V_3 \).

2 Attempt any Two:

(1) Prove that the map \(T : V_3 \rightarrow V_3 \) defined by
\[T(x_1, x_2, x_3) = (x_1, x_2, 0) \]
is linear.

(2) Let \(T : U \rightarrow V \) be a linear map. Prove that \(R(T) \) is a subspace of a vector space of \(V \).

(3) Obtain the general rule for a linear map \(T : V_2 \rightarrow V_2 \) such that \(T(0,1) = (3,2) \) and \(T(3,1) = (2,2) \).

(4) Let \(T : U \rightarrow V \) be a linear map. Then prove that \(T \) is one-one if and only if \(N(T) = \{0\} \).

3 Attempt any Two:

(1) Define a non-singular map. Let \(T : U \rightarrow V \) be a linear map. If \(v_1, v_2, \ldots, v_n \) are LI vectors of \(R(T) \) and \(u_1, u_2, \ldots, u_n \) are vectors of \(U \) such that \(T(u_1) = v_1, T(u_2) = v_2, \ldots, T(u_n) = v_n \), then prove that \(u_1, u_2, \ldots, u_n \) are LI.
(2) Let $T : U \rightarrow V$ be a linear map and U be a finite-dimensional vector space. Then prove that
$$r(T) + n(T) = \dim U.$$

(3) Verify the Rank-Nullity Theorem for the linear map
$T : V_3 \rightarrow V_2$ defined by
$T(e_1) = (2,1)$, $T(e_2) = (0,1)$ and
$T(e_3) = (1,1)$.

(4) Prove that the linear map $T : V_3 \rightarrow V_3$ defined by
$T(e_1) = e_1$, $T(e_2) = e_1 + e_2$ and $T(e_3) = e_1 + e_2 + e_3$ is non-singular and find T^{-1}.

4 Attempt any Two :

(1) Let $T : U \rightarrow V$ and $S : V \rightarrow W$ two linear maps. If S and T are non-singular, then prove that ST is non-singular and $(ST)^{-1} = T^{-1}S^{-1}$.

(2) Determine the matrix $(T : B_1, B_2)$ for the linear map
$T : V_3 \rightarrow V_2$ defined by $T(x,y,z) = (x+y, y+z)$ relative to the bases : $B_1 = \{(1,1,1), (1,0,0), (1,1,0)\}$, $B_2 = \{(1,0), (0,1)\}$.

(3) Determine the linear map associated with
the matrix
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{bmatrix}$$
relative to the bases : $B_1 = \{(1,-1,1), (1,2,0), (0,-1,0)\}$,
$B_2 = \{(1,1), (2,-1)\}$.
(4) Verify the Rank-Nullity Theorem for the matrix
\[A = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 7 & 2 \\ 1 & 0 & 1 \end{bmatrix} \]

5 Attempt any Two:

(1) Define an inner product space. In an inner product space V, prove that:

(i) $(u + v) \cdot w = u \cdot w + v \cdot w$;

(ii) $u \cdot (\alpha v) = \alpha (u \cdot v)$; for all $u, v \cdot w \in V$ and for any scalar α.

(2) Define the norm of a vector in an inner product space. In an inner product space establish the Triangle Inequality.

(3) Prove that an orthogonal set of non-zero vectors in an inner product space is LI.

(4) Orthogonalize the LI set $B = \{(0, 0, 1), (1, 1, 0), (1, 5, 2)\}$ of V_3 by the Gram-Schmidt Process.