1. (a) Define Euclidean space \(\mathbb{C}^n \). Prove that Euclidean space \(\mathbb{C}^n \) is a metric space.

(b) Define equivalent norms. Show that

\[
\|x\|_\infty = \max_{1 \leq i \leq n} |x_i| \quad \text{and} \quad \|x\|_2 = \left(\sum_{i=1}^{n} |x_i|^2 \right)^{1/2}
\]

define on a vector space of ordered \(n \)-tuples of numbers are equivalent.

(c) Define algebraically reflexive space. Prove that a finite dimensional vector space is algebraically reflexive.

OR

RR-0306] 1 [Contd....
1 (a) Show that the dual space X' of a normed space X is a Banach space.

(b) Prove that a compact subspace M of a metric space X is closed and bounded.

(c) Let $B(A)$ be the set of all bounded functions defined on a set A, define a distance function

$$d(x, y) = \sup_{t \in A} |x(t) - y(t)|; x, y \in B(A).$$

Show that d is a metric on $B(A)$.

2 (a) Show that the space l^p is a complete space.

(b) Prove that an Euclidean space \mathbb{R}^n is a Hilbert space.

(c) Let $T : D(T) \to Y$ be a bounded linear operator, where $D(T) \subset X$, X is a normed space and Y is a Banach space, then prove that T has a bounded linear extension $\overline{T} : D(T) \to Y$ with $\|\overline{T}\| = \|T\|$.

OR

2 (a) Define inner product space. Prove that an inner product space is a normed space.

(b) Define Direct sum. Let Y be any closed subspace of a Hilbert space H, then prove that $H = Y \oplus Z$, where $Z = Y^\perp$.

[Contd....]
(c) A dot product defines a functional \(f : \mathbb{R}^3 \to \mathbb{R} \) by
\[
f(x) = x_1 a + x_2 a + x_3 a; \quad \text{where} \quad x \in \mathbb{R}^3, \ a \in \mathbb{R},
\]
then show that \(f \) is linear, bounded with \(\|f\| = \|a\| \).

3 (a) Let \(\| \cdot \| \) be a norm generated by inner product on \(X \), then show that for complex scalar:

(i) \(R_c \langle x, y \rangle = \frac{1}{4} \left[\| x + y \|^2 - \| x - y \|^2 \right] \)

(ii) \(I_m \langle x, y \rangle = \frac{1}{4} \left[\| x + iy \|^2 - \| x - iy \|^2 \right] \)

(b) In an inner product space \(X \), prove that
\[
x \perp y \Rightarrow \| x + y \|^2 = \| x \|^2 + \| y \|^2.
\]

(c) Let \(x_1(t) = t^2, x_2(t) = t \) and \(x_3(t) = 1 \) Orthonormalize \(x_1, x_2 \) and \(x_3 \) in this order on the interval \([-1,1]\) with respect to the inner product \(\langle x, y \rangle = \int_{-1}^{1} x(t) y(t) dt \).

OR

3 (a) Define self adjoint operator and prove the following.

Let \(U : H \to H \) and \(V : H \to H \) be unitary operator on a Hilbert source \(H \); then :

(i) \(U \) is isometric and \(\| U_x \| = \| x \| \)

(ii) \(\| U \| = 1 \) where \(H \neq \{0\} \)

(iii) \(U^{-1} \) is unitary.
(b) Let X be a normed linear space and $x_0 \in X$ be arbitrary, where $x_0 \neq 0$, then prove that \exists a bounded linear functional \hat{f} on X such that $\|\hat{f}\|=1$ and $\hat{f}(x_0) = \|x_0\|.$

(c) Let H and \tilde{H} be two Hilbert space and $S : H \to \tilde{H}$ and $T : H \to \tilde{H}$ be bounded linear operator and α be any scalar, then prove that

(i) $\left\langle T^*_y, x \right\rangle = \left\langle y, T_x \right\rangle$

(ii) $(S + T)^* = S^* + T^*$

(iii) $(\alpha T)^* = \bar{\alpha} T^*$.

4 (a) State and prove Riesz theorem. 20

(b) Show that Relation between adjoint operator and Hilbert adjoint operator.

(c) Let X and Y be inner product space and $Q : X \to Y$ be a bounded linear operator, then prove that

(i) $Q = 0$ iff $\left\langle Q_x, y \right\rangle = 0, \ \forall x \in X, \forall y \in Y$

(ii) $Q : X \to X$, where X is complex and $\left\langle Q_x, x \right\rangle = 0$ then $Q = 0$.

OR

4 (a) Let H be a Hilbert space and if H is separable then prove that every orthonormal set in H is countable. 20
(b) For every x in a normed space X,

\[\|x\| = \sup_{\substack{f \in X', \; f \neq 0 \atop f \neq 0}} \frac{|f(x)|}{\|f\|} \]

and if x_0 is

Such that $f(x_0) = 0 \quad \forall \; f \in X'$, then prove that $x_0 = 0$.

(5) State and prove the Hahn Banach Theorem on

Normed spaces.

(b) Define Partially ordered set. Prove that "Every vector space $X \neq \{0\}$ has Hamel basis.

(c) Let $T : D(T) \to Y$ be a bounded linear operator with domain $D(T) \subset X$, where X and Y are normed space, then prove that

(i) If $D(T)$ is a closed subset of X, then T is closed.

(ii) If T is closed and Y is complete then $D(T)$ is a closed subset of X.

OR

(a) Define bounded linear operator. Let $T : H_1 \to H_1$ be a bounded linear operator on Hilbert space H_1, then prove that

(i) If T is self adjoint then $\langle T_x, x \rangle$ is real.

(ii) If H is complex and $\langle T_x, x \rangle$ is real $\forall \; x \in H$, then $T : H_1 \to H_1$ is self adjoint.
(b) Let \((x_n)\) be a weakly convergent sequence in a normed space \(X\), say \(x_n \xrightarrow{w} x\), then prove that:

(i) then weak limit \(x\) of \((x_n)\) is unique.

(ii) every subsequence of \((x_n)\) converges weakly to \(x\).

(c) Let \((T_n)\) be a sequence of bounded linear operator \(T_n : X \to Y\) from a Banach space \(X\) into a normed space \(Y\), such that \(\|T_n x\|\) is bounded for every \(x \in X\), say \(\|T_n x\| \leq C_x\) where \(n = 1, 2, \ldots\) and \(C_x\) is real number, then prove that the sequence of the norms \(\|T_n\|\) is bounded.