

DF-2990

Second Year B. Sc. (Sem. III) Examination March / April - 2016

Electronics: Paper - III

(Electronic Circuits & Applications)

Time: Hours] [Total Marks: 50

Instructions:

(1)

- (2) All 28 questions are compulsory.
- (3) All Symbols and abbreviations have their usual meaning.
- (4) Non-programmable calculators are allowed.
- (5) Assume data if necessary.

Q. 1 to 12 Multiple choice questions: (1 mark)

Q. 13 to 22 Multiple Choise Questions: (2 marks)

Q. 23 to 28 Multiple Choice Questions: (3 marks)

O.M.R. Sheet ભરવા અંગેની અગત્યની સૂચનાઓ આપેલ O.M.R. Sheetની પાછળ છાપેલ છે.

Important instructions to fillup O.M.R. Sheet is given back side of provided O.M.R. Sheet.

1	Pow	er gain is always
	(A)	A negative number
	(B)	Zero
	(C)	All these
	(D)	A positive number
2	Inpu	t resistance for CC amplifier is
	(A)	Low
	(B)	Zero
	(C)	None of these
	(D)	High
3	The	function of a transistor is to do
	(A)	Amplification
	(B)	Filtering
	(C)	Regulation
	(D)	Rectification
4 Stabilization means making independent of temperatu or variations of transistor parameters.		ilization means making independent of temperature variations ariations of transistor parameters.
	(A)	Supply Voltage
	(B)	Input Current
	(C)	Collector Current
	(D)	Operating Point

2

[Contd...

DF-2990_D]

	(A)	Emitter bias circuit		
	(B)	Collector to base bias circuit		
	(C)	Voltage divider bias with emitter bias		
	(D)	Fixed bias circuit		
6		he low frequency region of RC coupled amplifier the citance is such that	effect	of
	(A)	Shunt capacitors are opened		
	(B)	The series capacitors and shunt capacitors are opened		
	(C)	The series capacitors and shunt capacitors are shorted		
	(D)	The series capacitors are shorted		
7	The	half power frequency is also known as		
	(A)	Corner frequency		
	(B)	Break frequency		
	(C)	All ot these		
	(D)	Cut off frequency		
8		t is the phase difference between input voltage and output mmon emitter amplifier ?	voltage	in
	(A)	-180°		
	(B)	0		
	(C)	90°		
	(D)	180°		
DF-2	990_E)] 3	[Conto	ł

Which circuit has highest stability factor ?

5

9	emitt	proper operation to transistor as an amplifier, (CE configuration) be ter junction should be and collector emitter junction sho	
	(A)	(forward biased, reverse biased)	
	(B)	(forward biased, forward biased)	
	(C)	(reverse biased, reverse biased)	
	(D)	(reverse biased, forward biased)	
10		at is the main advantage of CE amplifier over CB amplifier as faring is concerned ?	as
	(A)	Small input resistance	
	(B)	Less voltage gain	
	(C)	None of these	
	(D)	Single battery operation	
11	Whic	ch circuit is the best biasing circuit ?	
	(A)	Emitter bias circuit	
	(B)	Collector to base bias circuit	
	(C)	Voltage divider bias with emitter bias	
	(D)	Fixed bias circuit	
12	Input	at resistance for CB amplifier is	
	(A)	Less than h _{ib}	
	(B)	Equal to h _{ib}	
	(C)	Greater than h _{ie}	
DF-2	(D) 990_I	Greater than h_{ib} D Cont	d

13	An amplifier has a voltage gain of 100. What will be the voltage gain if 10% negative feedback is given?			
	(A) 90%			
	(B) 90.0			
	(C) 0.909			
	(D) 9.09			
14	An amplifier has a voltage gain of 40 and 200 kHz bandwidth. Calculate the bandwidth with feedback if a 10% negative feedback is introduced in series with input. (A) 10 kHz			
	(A) 10 KHz (B) 1000 kHz			
	(C) 500 kHz			
	(D) 100 kHz			
15	Example of voltage series negative feedback amplifier is (A) CE amplifier without bypass capacitor (B) CC amplifier (C) CB amplifier (D) CE amplifier with bypass capacitor			
16	The circuit which exhibits 100% negative feedback			
	(A) CE amplifier without bypass capacitor			
	(B) Collector to base biasing circuit			
	(C) Emitter follower			
	(D) CE amplifier with bypass capacitor			
17	For voltage shunt feedback amplifier input resistance (A) Decreases (B) Becomes zero (C) None (D) Increases			
	(D) Indicases			

18	Voltage shunt feedback amplifier is a
	(A) Pure current amplifier
	(B) Transconductance amplifier

(C) Transresistance amplifier

(D) Pure voltage amplifier

19 Select the correct relation for CE configuration

(A)
$$I_b = h_{ie}I_b + h_{re}V_c$$
, $V_c = h_{fe}I_b + h_{oe}V_c$

(B)
$$V_e = h_{ie}I_c + h_{re}V_c$$
, $I_c = h_{fe}I_c + h_{oe}V_b$

(C)
$$V_c = h_{ie}I_b - h_{re}V_c$$
, $I_b = h_{fe}I_c - h_{oe}V_c$

(D)
$$V_b = h_{ie}I_b + h_{re}V_c$$
, $I_c = h_{fe}I_b + h_{oe}V_c$

20 h_{fe} is

(A) A negative number

(B) Zero

(C) All of these

(D) A positive number

21 What is the general equation for voltage gain of an amplifier with feedback?

(A)
$$A/(1+A\beta)$$

(B)
$$A(1-A\beta)$$

(C)
$$A(1+A\beta)$$

(D)
$$A/(1-A\beta)$$

An amplifier has a voltage gain of 40. Calculate feedback in dB if a 10% negative feedback is introduced?

(C)
$$-1.4 \text{ dB}$$

	(A)	20 Hz to 20 kHz
	(B)	Few kHz to 100 MHz
	(C)	All of these
	(D)	0 to few Hz
24	In c	lass B amplifier the Q - point is located
	(A)	Near the saturation region
	(B)	Near the cut off region
	(C)	Below the cut off region
	(D)	At the centre of the active region
25	An	ideal current amplifier must have
	(A)	Zero input resistance and zero output resistance
	(B)	Zero input resistance and infinite output resistance
	(C)	Infinite input resistance and infinite output resistance
	(D)	Infinite input resistance and zero output resistance

7

[Contd...

The frequency range of an audio amplifier is

23

DF-2990_D]

- With negative feedback the bandwidth _____ and the noise ____.
 - (A) increases, decreases
 - (B) decreases, increases
 - (C) decreases, decreases
 - (D) increases, increases
- 27 If an amplifier has a bandwidth of 200 kHz and voltage gain of 50, what will be new bandwidth and gain if 5% negative feedback is introduced?
 - (A) 7 kHz, 142.8
 - (B) 70 kHz, 14.28
 - (C) 700 Hz, 1.428
 - (D) 0.7 MHz, 14.28
- Design a voltage divider bias circuit for the following specifications V_{cc} = 20 v, I_c = 10 mA, V_{CE} = 8 V, β = 80
 - (A) $R_{\rm E} = 200 k \Omega$, $R_{\rm C} = 1 \Omega$, $R_2 = 160 \Omega$, $R_1 = 1 k \Omega$
 - (B) $R_E = 200 \text{m} \Omega$, $R_C = 10 \text{ k} \Omega$, $R_2 = 16 \Omega$, $R_1 = 1 \text{k} \Omega$
 - (C) $R_E = 20 \,\mu\Omega$, $R_C = 1 \, m\Omega$, $R_2 = 1600 M\Omega$, $R_1 = 10 k\Omega$
- (D) $R_E = 200\,\Omega$, $R_C = 1~k\,\Omega$, $R_2 = 1600\,\Omega$, $R_1 = 10k\,\Omega$ DF-2990_D] 8 [300÷4]