

DF-2991

Second Year B. Sc. (Sem. III) Examination March / April - 2016

Electronics: Paper - IV

(Advance Digital Electronics & Circuit Design)

Time: 2 Hours] [Total Marks: 50

Instructions:

(1)

- (2) All 28 questions are compulsory.
- (3) All symbols and abbreviations have their ususal meaning.
- (4) Figures to right indicate full marks.
- (5) Non-programmable calculators are allowed.
- (6) Assume data if necessary.

Q. 1 to 12 Multiple choice questions: (1 mark)

Q. 13 to 22 Multiple Choise Questions: (2 marks)

Q. 23 to 28 Multiple Choice Questions: (3 marks)

O.M.R. Sheet ભરવા અંગેની અગત્યની સૂચનાઓ આપેલ O.M.R. Sheetની પાછળ છાપેલ છે.

Important instructions to fillup O.M.R. Sheet are given back side of provided O.M.R. Sheet.

1	Which of the following condition not allowed in S-R flip-flop using NOR gates?
	(A) $S=1$, $R=0$
	(B) S=1, R=1
	(C) $S=0$, $R=0$
	(D) $S=0$, $R=1$
2	Which type of ROM can be erased by an electrical signal ?
	(A) EPROM
	(B) EEPROM
	(C) ROM
	(D) mask ROM
3	Which type of ROM has to be custom built by the factory?
	(A) EPROM
	(B) None of these
	(C) ROM
	(D) mask ROM
4	ABCD counter is a
	(A) decade counter
	(B) MOD-16 counter
	(C) binary counter
	(D) full-modulus counter
5	To serially shift a nibble (four bits) of data into a shift register, there must be
	(A) eight clock pulses
	(B) one clock pulse for each 1 in the data
	(C) one clock pulse
	(D) four clock pulses
	(E) Total Group Princes
6	What is one disadvantage of an S-R flip flop?
	(A) It has no clock input
	(B) It has only a single output
	(C) It has no enable input
	(D) It has an invalid state

7	How many flip-flops are required to make a MOD-32 binary counter? (A) 5 (B) 6 (C) 3 (D) 45
8	In sequential circuits the present input depends on (A) present as well as past inputs (B) None of these (C) past input only (D) present input only
9	When two counters are cascaded, the overall MOD number is equal to the of their individual MOD numbers. (A) log (B) reciprocal (C) product (D) sum
10	The main difference between JK and RS fip-flop is that (A) JK flip-flop accepts both inputs as 1 (B) JK flip-flop is acronym of junction cathode multivibrator (C) JK flip-flop does not need a clock pulse (D) There is feedback in JK flip-flop
11	A flip-flop has two out puts which are (A) always complementary (B) all of these stated (C) always 0 (D) always 1
12	Master-slave configuration is used in flip flops to (A) eliminate the race round condition (B) improve the reliability (C) increase its clock rate (D) reduce power dissipation

13	Wha	at is meant by parallel-loading the register?
	(A)	Momentarily disabling the synchronous SET and RESET inputs
	(B)	Shifting the data in all flip-flops simultaneously
	(C)	Loading data in all four flip-flops at the same time
	(D)	Loading data in two of the flip-flops
14		at happens to the output in an asynchronous binary down atter whenever a clock pulse occurs?
	(A)	The output word decreases by 1
	(B)	The output word decreases by 2
	(C)	The output word increases by 1
	(D)	The output word increases by 2
15	Whi FF's	ch of the following best describes the action of pulse-triggered ?
	(A)	A pulse on the clock transfers data from input to output
	(B)	The synchronous inputs must be pulsed
	(C)	The clock and the S-R inputs must be pulse shaped
	(D)	The data is entered on the leading edge of the clock, and transferred out on the trailing edge of the clock.

16		R latch occurs when			
	(A)	a LOW is applied to the S input while a HIGH is applied to the R input			
	(B)	a HIGH is applied to the S input while a LOW is applied to the R input			
	(C)	HIGHs are applied simultaneously to both inputs S and R			
	(D)	LOWs are applied simultaneously to both inputs S and R			
17		general rule for stable flip-flop triggering the clock pulse rise fall times must be ":			
	(A)	at a maximum value to enable the input control signals to stabilize			
	(B)	of no consequence as long as the levels are within the determinate range of value			
	(C)	very long			
	(D)	very short			
18	into	group of bits 11001 is serially shifted (right-most bit first) a 5-bit parallel output shift register with an initial state 10. After three clock pulses, the register contains			
	(A)	00101			
	(B)	00110			
	(C)	01110			
	(D)	00001			

19	A 4	bit parallel access shift register can be used for
	(A)	parallel in/serial out operation
	(B)	All of these
	(C)	serial in/serial out operation
	(D)	serial in/parallel out operation
20 Synchronous counters eliminate the delay problems ence with asynchronous counters because the :		chronous counters eliminate the delay problems encountered asynchronous counters because the :
	(A)	input clock pulses are not used to activate any of the counter stages
	(B)	input clock pulses are applied simultaneously to each stage
	(C)	input clock pulses are applied only to the first and last stages
	(D)	input clock pulses are applied only to the last stage
21	Wha	at is the difference between a 7490 and a 7492?
	(A)	7490 is a MOD-16, 7492 is a MOD-10
	(B)	7490 is a MOD-10, 7492 is a MOD-12
	(C)	7490 is a MOD-12, 7492 is a MOD-10
	(D)	7490 is a MOD-12, 7492 is a MOD-16
· · · · · · · · · · · · · · · · · · ·		at type of register would shift a complete binary number in bit at a time and shift all the stored bits out one bit at a time?
	(A)	SIPO
	(B)	PIPO
	(C)	PISO
	(D)	SISO
DF-2	2991_	[C] 6 [Contd

23	A 4 bit binary ripple counter and 4 bit synchronous counter uses with propagation delay time of 50 ns each. The possible maximum delay time required for the change the state will be for 4 bit ripple counter isns and for 4 bit synchronous counter isns.
	(A) 100, 100
	(B) 200, 200
	(C) 50, 50
	(D) 200, 50
24	The bit sequence 10011100 is serially entered (right-most bit first) into an 8-bit parallel out shift register that is initially clear. What are the Q outputs after four clock pulses?
	(A) 00001100
	(B) 11110000
	(C) 10011100
	(D) 11000000
25	Four J-K flip-flops are cascaded with their J-K inputs tied HIGH. If the input frequency (fin) to the first flip-flop is 32 kHz, the output frequency (fout) is (A) 4 kHz (B) 16 kHz (C) 1 kHz (D) 2 kHz

- A bidirectional 4-bit shift register is storing the nibble 1101. Its input is HIGH. The nibble 1011 is waiting to be entered on the serial data-input line. After three clock pulses, the shift register is storing _____.
 - (A) 0001
 - (B) 1110
 - (C) 1101
 - (D) 0111
- A MOD-16 ripple counter is holding the count 1001_2 . What will the count be after 31 clock pulses?
 - (A) 1011_2
 - (B) 1101₂
 - (C) 1000₂
 - (D) 1010₂
- 28 What decimal value is required to produce an output at "X"?

- (A) 2
- (B) 5
- (C) 1
- (D) 1 or 4

