

DF-3001

B. Sc. (Microbiology) (Sem. III) Examination March / April - 2016

MB-06: Bioenergetics & Enzymology

Time: Hours]	[Total Marks :
Instructions:	
(1)	
નીચે દર્શાવેલ → નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fillup strictly the details of → signs on your answer book. Name of the Examination: ■ B. Sc. (MICROBIOLOGY) (SEM. 3)	Seat No.:
Name of the Subject :	<u> </u>
★ MB-06 : BIOENERGETICS & ENZYMOLOGY	
Subject Code No.: 3 0 0 1 Section No. (1, 2,): Nil	Student's Signature

- (2) This exam contains 50 multiple choice questions, each worth I mark.
- (3) Choose only ONE most appropriate answer per question.
- (4) Do not crease or fold the answer sheet.

O.M.R. Sheet ભરવા અંગેની અગત્યની સૂચનાઓ આપેલ O.M.R. Sheetની પાછળ છાપેલ છે.

Important instructions to fillup O.M.R. Sheet is given on back side of the provided O.M.R. Sheet.

- Remarkable similarity has been found in the ribonuclease structure of :
 - (A) E.coli and humans
 - (B) Cows and humans
 - (C) Rat and E.coli
 - (D) Mice and humans
- 2 Lysozyme is also known as:
 - (A) All of these
 - (B) Muramidase
 - (C) RNase
 - (D) Ribonuclease
- 3 Identify correct optimum temperature for an enzyme from below graph:

- (A) 60°C
- (B) 10°C
- (C) 30° C
- (D) 40°C
- 4 Lysozyme is devoid of:
 - (A) Co-factors
 - (B) Co enzyme
 - (C) Co-enzyme or metal-ion co-factors
 - (D) Metal ion co-factors
- Complex enzyme systems that are not independent molecules, but occurs as aggregates in a mosaic pattern involving several different enzymes are known as:
 - (A) None of these
 - (B) Multienzyme system
 - (C) Enzyme system
 - (D) Both Multienzyme system and Enzyme system

conce by the (A) (B) (C)	Faster Slower S	
(D) In M conc by th (A) (B)	Slower M equation, the rate of appearance of products is proportional to the entration of the enzyme-substrate complex which is generally expressed the following equation: $K = V \neq (ES)$ $V = K \neq (PS)$	
(D) In M conc by th (A)	Slower Slower M equation, the rate of appearance of products is proportional to the entration of the enzyme-substrate complex which is generally expressed as following equation : $K = V \neq (ES)$	
(D) In M conce by the	Slower M equation, the rate of appearance of products is proportional to the entration of the enzyme-substrate complex which is generally expressed as following equation:	
(D) In M	Slower M equation, the rate of appearance of products is proportional to the entration of the enzyme-substrate complex which is generally expressed	
,		
(C)	Faster	
(B)	Neutral	
(A)	All	
The higher activation energy, reaction.		
(D)	Molecular levels of the ground state and the normal state	
(C)	Molecular levels of the ground state and the transition state	
(B)	Energy levels of the ground state and the transition state	
(A)	Molecular levels of the energy gap state and the normal state	
Activ	vation energy is best defined as the difference between the:	
(D)	The bottom of the S_2 pocket	
(C)	The top of the S ₁ pocket	
(B)	The bottom of the S_1 pocket	
	ypsine, an aspartate residue is present at $___$: The top of S_2 pocket	
(D)	Smooth ellipsoidal	
(C)	Roughly ellipsoidal	
(B)	Ellipsoidal	
(A)	None of these	
The	shape of Lysozyme is :	
	(A) (B) (C) (D) In try (A) (B) (C) (D) Activ (A) (B) (C) (D) The (A)	

DF-3	001_E	4 [Contd
	(D)	Product concentration to produce maximum velocity
	(C)	Substrate concentration to produce maximum velocity
	(B)	Product concentration to produce half-maximum velocity
	(A)	Substrate concentration to produce half-maximum velocity
14	K _m i	s defined as in an enzyme catalysed reaction.
	(-)	caroung population
	(D)	Carboxypeptidase
	` /	Creatinine kinase
	(B)	Phosphoglucomutase
	(A)	All of these
13		Cormational changes during substrate binding and catalysis have been constrated for various enzymes such as :
	(D)	Darkfield microscope
	(C)	Compound microscope
	(B)	Phase contrast microscope
	(A)	Electron microscope and X-ray crystallography
12	Enzy	me Substrate complex are directly observed by :
	(D)	Substrate concentration
	(C)	Enzyme concentration
	(B)	Product concentration
	(A)	Catalytic concentration
During the experimental determination of K_m , the velocity of measured as the function of :		ng the experimental determination of $K_{\rm m}$, the velocity of reaction is ured as the function of :

DF-3	001_F	B] 5 [Contd.	•••
	(D)	Both Long extrapolation to determine Km and Uncertainty in resul-	ts
	(C)	Uncertainty in results	
	(B)	Long extrapolation to determine Km	
	(A)	None of these	
18	Disa	dvantage of Lineweaver – Burk plot is :	
	(D)	Product which closely resembles the real substrate	
	(C)	Enzyme which closely resembles the real substrate	
	(B)	Isomer which closely resembles the real substrate	
	(A)	Inhibitor which closely resembles the real substrate	
17	Subs	strate analogue is the :	
	(D)	Both Organic and Inorganic	
	(C)	Inorganic Path Organia and Inorgania	
	(B)	Organic	
	(A)	None of these	
16		chemical nature of inhibitors is:	
	(D)	Carbonic anhydrase	
	(C)	Alkaline phosphate	
	(B)	Alcohol dehydrogenase	
	(A)	All of these	
15	Zinc	containing metalloenzyme is :	

19 Identify the type of inhibition of enzyme shown below:

- (A) Any of the these
- (B) Noncompetitive inhibition
- (C) Competitive inhibition
- (D) Uncompetitive inhibition
- 20 A single crystal of protein or the protein fibers is capable of deflecting:
 - (A) None of these
 - (B) α rays
 - (C) β rays
 - (D) X-rays

21	Energ	gy conserving reaction is also called :	
	(A)	Fuelling reactions	
	(B)	Anabolism	
	(C)	Catabolism and fuelling reactions	
	(D)	Catabolism	
22	sourc	organisms reducing the organic molecules by using CO_2 as carbon be with the release of both energy and electron.	
	(A)	Chemoorganotrophs	
	(B)	Chemolithoautotrophs	
	(C)	Chemoheterotrophs	
	(D)	Chemoorganoheterotrophs	
23	Thermodynamics is a branch of science dealing with energy changes in a collection of matter, which is called :		
	(A)	None of these	
	(B)	System	
	(C)	Assembly	
	(D)	Reaction	
24	The	second law of thermodynamics involves, which of the following process?	
	(A)	None of these	
	(B)	Chemical	
	(C)	Physical	
	(D)	Both Chemical and Physical	
25	One	calorie of heat is equivalent to Joules.	
	(A)	4.4840	
	(B)	4.4810	
	(C)	4.1840	
	(D)	4.8140	
DF-3	001_E	7 [Contd	

- 26 Identify the correct definition of equilibrium constant :
 - (A) Equilibrium is the state of a reaction where the rate of reaction in both sides is unequal, with no further net change occurring in the concentration of reactants.
 - (B) Equilibrium is the state of a reaction where the rate of reaction in both sides is unequal, with no further net change occurring in the concentration of reactants and products.
 - (C) Equilibrium is the state of a reaction where the rate of reaction in both sides is unequal, with no further net change occurring in the concentration of products.
 - (D) Equilibrium is the state of a reaction where the rate of reaction in both sides is equal, with no further net change occurring in the concentration of reactants and products.
- 27 What is the relationship between $\Lambda G^{o'}$ and Keq?
 - (A) $G^{\circ} = -2.303RT.LogKeq$
 - (B) $G^{o'} = -2.203RT$. LogKeq
 - (C) $G^{o'} = -2.303RT.LogKeq$
 - (D) $G^{\circ} = -2.203RT.LogKeq$
- 28 Endergonic reaction is said to be:
 - (A) When $\Lambda G^{o'}$ is positive, the equilibrium constant is less than 2
 - (B) When $\Lambda G^{o'}$ is negative, the equilibrium constant is less than 1
 - (C) When $\Lambda G^{o'}$ is positive, the equilibrium constant is less than 1
 - (D) When $\Delta G^{o'}$ is negative, the equilibrium constant is less than 2
- 29 Which one is the true sentence for ATP in metabolism?
 - (A) All of these
 - (B) ATP as a coupling agent
 - (C) ATP makes endergonic reactions more favourable
 - (D) ATP is formed by exergonic reactions
- Peptidoglycan layer of the bacterial wall is activated by the higher energy compund of :
 - (A) Guanosine
 - (B) Cytidine
 - (C) Deoxythymidine
 - (D) Uridine

- Which one is true for the standard reduction potential?
 - (A) The equilibrium constant for reaction, E^o, is a measure of tendency of the acceptant to accept electron
 - (B) The equilibrium constant of a reaction, E^o, is a measure of tendency of the donor to lose electron
 - (C) The equilibrium constant of a reaction, E^o, is a measure of tendency of the donor to acquire electron
 - (D) The equilibrium constant for reaction, Ao, is a measure of tendency of the donor to lose electron
- 32 The reference standard for the reduction potential is :
 - (A) None of these
 - (B) Hydrogen system with an E'_0 of -0.42 volts
 - (C) Hydrogen system with an E'₀ of 420 millivolts
 - (D) Both Hydrogen system with an E'_{o} of -0.42 volts and Hydrogen system with an E'_{o} of -420 millivolts
- The difference in reduction potentials between NAD + / NADH and $1/20_2/$ H₂O is :
 - (A) 1.15 volts
 - (B) 1.12 volts
 - (C) 1.13 volts
 - (D) 1.14 volts
- 34 Select the most suitable statement for ETC:
 - (A) The carriers are organized such that the first electron carrier has the most negative E'o and each successive carrier is slightly less negative.
 - (B) The carriers are organized such that the first electron carrier has the positive E'o and each successive carrier is slightly less negative.
 - (C) The carriers are organized such that the last electron carrier has the most negative E'o and each successive carrier is negative.
 - (D) The carriers are organized such that the second electron carrier has the most negative E'o and each successive carrier is more negative.

35	The is	The nonheme iron protein active in photosynthetic electron transport system is		
	(A)	Co enzyme Q		
	(B)	Ferredoxin		
	(C)	Quinone		
	(D)	Ubiquinone		
36	Tryp	sine enzyme was isolated by John H. Northrop and Kunitz	from:	
	(A)	Swine stomach		
	(B)	Beef kidney		
	(C)	Beef liver		
	(D)	Beef pancreas		
37	The	ratio of enzyme : substrate molecules can be as high as :		
	(A)	1:100000		
	(B)	1:1000		
	(C)	1:10000		
	(D)	1:50000		
38	Enzymes, vitamins and hormones can be classified in a single category of biological chemicals because all of them are :			
	(A)	Enhance the oxidative metabolism		
	(B)	Proteins		
	(C)	Aid in regulating metabolism		
	(D)	Synthesized in organisms		
39	Exar	mple of lipid hydrolyzing enzyme is :		
	(A)	Dipeptidase		
	(B)	Lecithinases		
	(C)	Pepsin		
	(D)	Bromolin		
40	The	enzymes, which act normally within cells, are called :		
	(A)	Ferment		
	(B)	Endoenzyme		
	(C)	Exoenzyme		
	(D)	Apoenzyme		
DF-3	001_I	B] 10	[Contd	

41	Which of the following are co-enzymes?		
	(A)	NAD, K, CoA	
	(B)	Vitamin, Fe, Cu	
	(C)	NADPH ₂ , Ca, Co	
	(D)	NAD, NADP, FAD, FMN	
42	Which of the following is not an oxidation-reduction enzyme?		
	(A)	Hydrolases	
	(B)	Mutases	
	(C)	Sulfatases	
	(D)	Oxidases	
43	Radio immuno assay procedure for diagnosis cases of hypertension has been developed by :		
	(A)	None of these	
	(B)	BARC	
	(C)	TIFR	
	(D)	Both BARC and TIFR	
44	Endonucleases promotes reactions leading to		
	(A)	Recombination	
	(B)	Polymerisation	
	(C)	Co-angulations	
	(D)	DNA fragmentation	
45	Gene	erally, co-enzymes accounts for about% of entire enzyme molecule.	
	(A)	4	
	(B)	1	
	(C)	2	
	(D)	3	

46	The	catalytic power of an enzyme is measured by the
	(A)	Topology
	(B)	Turn over number
	(C)	Molecular activity
	(D)	Both Turn over number and Molecular activity
47		ngle molecule of enzyme catalase can convert $___$ H_2O_2 molecules H_2O and CO_2 in a minute.
	(A)	50,00,000
	(B)	5,000
	(C)	50,000
	(D)	5,00,000
48	The	pattern of enzyme specificity has been recognised as:
	(A)	All of these
	(B)	Absolute specificity
	(C)	Group specificity
	(D)	Optical specificity
49		enzyme specificity of sucrose has been found mainly for :
	(A)	Glucose
	(B)	Sucrose
	(C)	Raffinose
	(D)	Both Sucrose and Raffinose
.	m1	
50	is:	value used to measure the temperature sensitivity of a biological function
	(A)	None of these
	(B)	Temperature quotient
	(C)	Q_{10}
	(D)	Both of these
	(-)	