DPP-2997 ## Second Year B. Sc. (Sem. III) Examination March / April - 2016 Electronics (Applied Electronics): Paper - III (Electronics Devices & Circuit) Time: 2 Hours] [Total Marks: 50 ## **Instructions:** **(1)** - (2) All 28 questions are compulsory. - (3) Symbols used in the paper have their usual meaning. - (4) Figures to right indicate full marks. Q. 1 to 12 Multiple Choice Questions: (1 mark) Q. 13 to 22 Multiple Choice Questions: (2 marks) Q. 23 to 28 Multiple Choice Questions: (3 marks) O.M.R. Sheet ભરવા અંગેની અગત્યની સૂચનાઓ આપેલ O.M.R. Sheetની પાછળ છાપેલ છે. Important instructions to fillup O.M.R. Sheet is given on back side of the provided O.M.R. Sheet. | DPP- | 2997_ | A] 2 | [Contd | |------|--------|---|---------| | | (D) | Joint field effect transformer | | | | (C) | Junction field effect transformer | | | | (B) | Junction field effect transistor | | | | (A) | Joint field effect transistor | | | 4 | Full | form of JFET | | | | | | | | | (D) | BI-polar junction transformer | | | | (C) | BI-Junction transformer | | | | (B) | BI-polar junction transistor | | | | (A) | BI-Junction transistor | | | 3 | Full : | form of BJT | | | | ` / | | | | | (D) | None of these | | | | (C) | Active region | | | | (B) | Cut-off region | | | | (A) | Saturation region | | | 2 | A cla | ass-C amplifier is operated with its operating point set in | | | | (D) | All of these | | | | (C) | For improving the gain stability | | | | (B) | For increasing the impedance | | | | (A) | For extending the bandwidth | | The negative feedback is used in the amplifier - 1 | 5 | Full 1 | form of MOSFET | |---|--------|--| | | (A) | Metal oxide semiconductor field effect transformer | | | (B) | Metal oxide semiconductor field effect transistor | | | (C) | Metal oxygen semiconductor field effect transistor | | | (D) | Metal oxygen semicondoctor field effect transformer | | | | | | 6 | Full 1 | form of CMOS | | | (A) | Compulsory metal oxide semiconductor | | | (B) | Complementary metal oxide semiconductor | | | (C) | Corrosive metal oxide semiconductor | | | (D) | Corrospondent metal film oxide semiconductor | | | | | | 7 | Gain- | -bandwidth product of amplifier with feedback and without feedback | | | (A) | Equal | | | (B) | Unequal | | | (C) | Both of these | | | (D) | None of these | | | | | | 8 | Cond | lition required for oscillation | | | (A) | Barkhausen criteria and positive feedback | | | (B) | Amplifier and negative feedback | | | (C) | Barcation criteria and negative feedback | | | (D) | Negative and positive feedback | | | | | | 9 | Full | Full form of UJT | | |----|------------|--|--| | | (A) | Uni joint transformer | | | | (B) | Union junction transistor | | | | (C) | Uni-junctional transistor | | | | (D) | None of these | | | | | | | | 10 | For | oscillator circuit | | | | (A) | Input and frequency determining network is required | | | | (B) | No input, frequency determining network / tank circuit is required | | | | (C) | Input required, feedback not required | | | | (D) | No input and feedback | | | | | | | | 11 | For | amplifier circuit | | | | (A) | Input and feedback network is required | | | | (B) | Input required, no feedback required | | | | (C) | No input required, feedback required | | | | (D) | No input and feedback | | | | | | | | 12 | In o | scillator the negative feedback is used for | | | | | | | | | (A) | Increasing the output amplitude | | | | (A)
(B) | Increasing the output amplitude Decreasing the output amplitude | | | | ` _ | · | | | | (B) | Decreasing the output amplitude | | | 13 | I_{DSS} is the current from drain to source with shorted gate. Since loss is measured with the shorted gate it is the drain current you can get with | | | |----|--|---|--| | | | nal operation of the JFET. All other gate voltages are negative and result drain current. | | | | (A) | Maximum, Less | | | | (B) | Less, Maximum | | | | (C) | Minimum, Less | | | | (D) | Maximum, Large | | | 14 | The | E-MOSFET operates in the mode only. This kind of MOSFET | | | | is im | portant in digital circuit. It is also known as normally MOSFET. | | | | (A) | Enhancement, off | | | | (B) | De-enhancement, off | | | | (C) | Enhancement, on | | | | (D) | Only enhancement, on | | | 15 | If tra | ansistors $\alpha_{dc} = 0.98$, the value of β_{dc} | | | | (A) | 49 | | | | (B) | .49 | | | | (C) | .049 | | | | (D) | .0049 | | | 16 | If tra | ansistors β_{dc} =100, then value of α_{dc} | | | | (A) | .099 | | | | (B) | .99 | | | | (C) | 9.9 | | | | (D) | 99 | | | 17 | The | α (dc alpha) of a transistor equal the ratio of current to current, and β (dc Beta) equals the ratio of current to | | | | curre | ent. | | | | (A) | Collector to emitter and collector to base | | | | (B) | Collector to base and collector to emitter | | | | (C) | Both of these | | | | (D) | None of the these | | | | | | | | 18 | remains is called equivalent circuit. If you reduce all sources to | |----|---| | | zero and short all coupling and by-pass capacitors, the circuit that remains | | | is the equivalent circuit. | | | (A) dc, ac | | | (B) ac, dc | | | (C) Transient, steady | | | (D) Small signal, Large signal | | | (b) Simuli digital, Eurge digital | | 19 | A by-pass capacitor is similar to coupling capacitor except that it couples an | | | ungrounded points to a point. A by-pass capacitor produces an ac | | | | | | (A) Ground, Grounded | | | (B) Grounded, Ground | | | (C) Supply, Ground | | | (D) Grounded, Supply | | 20 | You multiply individual β 's to get the overall β of a pair. If β_1 is | | | 50 and β_2 is 100 then β equals | | | (A) Darlington, 500 | | | (B) Darlington, 5000 | | | (C) Coupling, 5000 | | | (D) Decoupling, 5000 | | 21 | When the collector is at ac ground is called a grounded collector or | | | amplifier, stepping up the impedence is the main reason for using | | | CC amplifier, also known as (A) Emitter-Follower, Common collector | | | | | | (B) Common base, emitter follower(C) Common emitter emitter follower | | | | | | (D) Common collector, emitter-follower | | 22 | The ac collector voltage is 180° out of face with the ac base voltage. This | | | inversion between base and collector happens in all base driven | | | amplifiers. The phase of the emitter voltage is the same as the phase of | | | ac voltage. | | | (A) Phase, base | | | (B) Face, Phase | | | (C) Base, Phase | | | (D) None of thse | | | | 6 [Contd... DPP-2997_A] | 23 | In JFET the change in drain current of 0.2 mA and corresponding change of 0.001V, then $\boldsymbol{g}_{\rm m}$ is | | ge of | |------|--|---|-------| | | (A) | $0.0002 \mu s$ | | | | (B) | $2000 \mu s$ | | | | (C) | $200 \mu s$ | | | | (D) | $20 \mu s$ | | | 24 | no ir | quicent collector current and voltage are the I_C and V_{CE} when the nput You can determine quiescent current and voltage from equivalent circuit. V_{CEQ} represent the collector to emitter vol ac signal. | the | | | (A) | Signal, dc, No | | | | (B) | Signal, ac, with | | | | (C) | Signal, ac, No | | | | (D) | None of these | | | 25 | Because the gate is insulated from the channel, a mosfet is also known as not the mode. This type of MOSFET is also known as not MOSFET. | | node | | | (A) | Insulated-gate, ehnahcement, Off | | | | (B) | Floating-gate, Depletion On | | | | (C) | Insulated-Gate Depletion, On | | | | (D) | Floating-gate, Depletion On and Insulated-Gate Depletion, On | | | DPP- | -2997_ | _A] 7 [Con | ıtd | | is biased and whereas the base is biased. The crucial differe means the JFET is a controlled device. (A) Forward, Reverse, Current (B) Reverse, Forward, Voltage (C) Forward, Reverse, Voltage (D) Forward, Forward, Voltage 27 The three part of a JFET is the source, the and the ? field effect is related to the layer around each pn junction. ? more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g _m = 75 μs then what is r _d ? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ (D) 13.3 kΩ | 26 | The | tey difference between a JFET and a bipolar transistor is this: the gate | | |--|------------|-------|--|--| | (A) Forward, Reverse, Current (B) Reverse, Forward, Voltage (C) Forward, Reverse, Voltage (D) Forward, Forward, Voltage 27 The three part of a JFET is the source, the and the The field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g_m = 75 μs then what is r_d? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ | | is | biased and whereas the base is biased. The crucial difference | | | (B) Reverse, Forward, Voltage (C) Forward, Reverse, Voltage (D) Forward, Forward, Voltage 27 The three part of a JFET is the source, the and the The field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g_m = 75 μs then what is r_d? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ | | mear | ns the JFET is a controlled device. | | | (C) Forward, Reverse, Voltage (D) Forward, Forward, Voltage 27 The three part of a JFET is the source, the and the The field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g_m = 75 μs then what is r_d? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ | | (A) | Forward, Reverse, Current | | | (D) Forward, Forward, Voltage 27 The three part of a JFET is the source, the and the The field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g_m = 75 μs then what is r_d? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ | | (B) | Reverse, Forward, Voltage | | | The three part of a JFET is the source, the and the The field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g_m = 75 μs then what is r_d? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ | | (C) | Forward, Reverse, Voltage | | | field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) 133 $k\Omega$ (B) 1.33 $k\Omega$ (C) 1330 $k\Omega$ | | (D) | Forward, Forward, Voltage | | | field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) 133 $k\Omega$ (B) 1.33 $k\Omega$ (C) 1330 $k\Omega$ | | | | | | more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) 133 $k\Omega$ (B) 1.33 $k\Omega$ | 2 7 | The | three part of a JFET is the source, the and the The | | | (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) $133 k\Omega$ (B) $1.33 k\Omega$ (C) $1330 k\Omega$ | | field | effect is related to the layer around each pn junction. The | | | (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) $133 k\Omega$ (B) $1.33 k\Omega$ (C) $1330 k\Omega$ | | more | e negative the gate voltage, the the drain current. | | | (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) $133 k\Omega$ (B) $1.33 k\Omega$ (C) $1330 k\Omega$ | | (A) | Gate, Drain P-type, Smaller | | | (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) 133 $k\Omega$ (B) 1.33 $k\Omega$ (C) 1330 $k\Omega$ | | (B) | Gate, Drain, n-tye, Smaller | | | Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) $133 k\Omega$ (B) $1.33 k\Omega$ (C) $1330 k\Omega$ | | (C) | Gate, Drain, Depletion, Smaller | | | (A) $133 \ k\Omega$ (B) $1.33 \ k\Omega$ (C) $1330 \ k\Omega$ | | (D) | Gate, Drain, Depletion, Larger | | | (A) $133 \ k\Omega$ (B) $1.33 \ k\Omega$ (C) $1330 \ k\Omega$ | | | | | | (B) 1.33 $k\Omega$
(C) 1330 $k\Omega$ | 28 | Data | sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? | | | (C) 1330 $k\Omega$ | | (A) | 133 $k\Omega$ | | | | | (B) | $1.33 \ k\Omega$ | | | (D) 13.3 $k\Omega$ | | (C) | 1330 $k\Omega$ | | | | | (D) | 13.3 $k\Omega$ | |