

DPP-2997

Second Year B. Sc. (Sem. III) Examination March / April - 2016

Electronics (Applied Electronics): Paper - III

(Electronics Devices & Circuit)

Time: 2 Hours] [Total Marks: 50

Instructions:

(1)

- (2) All 28 questions are compulsory.
- (3) Symbols used in the paper have their usual meaning.
- (4) Figures to right indicate full marks.

Q. 1 to 12 Multiple Choice Questions: (1 mark)

Q. 13 to 22 Multiple Choice Questions: (2 marks)

Q. 23 to 28 Multiple Choice Questions: (3 marks)

O.M.R. Sheet ભરવા અંગેની અગત્યની સૂચનાઓ આપેલ O.M.R. Sheetની પાછળ છાપેલ છે.

Important instructions to fillup O.M.R. Sheet is given on back side of the provided O.M.R. Sheet.

DPP-	2997_	A] 2	[Contd
	(D)	Joint field effect transformer	
	(C)	Junction field effect transformer	
	(B)	Junction field effect transistor	
	(A)	Joint field effect transistor	
4	Full	form of JFET	
	(D)	BI-polar junction transformer	
	(C)	BI-Junction transformer	
	(B)	BI-polar junction transistor	
	(A)	BI-Junction transistor	
3	Full :	form of BJT	
	` /		
	(D)	None of these	
	(C)	Active region	
	(B)	Cut-off region	
	(A)	Saturation region	
2	A cla	ass-C amplifier is operated with its operating point set in	
	(D)	All of these	
	(C)	For improving the gain stability	
	(B)	For increasing the impedance	
	(A)	For extending the bandwidth	

The negative feedback is used in the amplifier -

1

5	Full 1	form of MOSFET
	(A)	Metal oxide semiconductor field effect transformer
	(B)	Metal oxide semiconductor field effect transistor
	(C)	Metal oxygen semiconductor field effect transistor
	(D)	Metal oxygen semicondoctor field effect transformer
6	Full 1	form of CMOS
	(A)	Compulsory metal oxide semiconductor
	(B)	Complementary metal oxide semiconductor
	(C)	Corrosive metal oxide semiconductor
	(D)	Corrospondent metal film oxide semiconductor
7	Gain-	-bandwidth product of amplifier with feedback and without feedback
	(A)	Equal
	(B)	Unequal
	(C)	Both of these
	(D)	None of these
8	Cond	lition required for oscillation
	(A)	Barkhausen criteria and positive feedback
	(B)	Amplifier and negative feedback
	(C)	Barcation criteria and negative feedback
	(D)	Negative and positive feedback

9	Full	Full form of UJT	
	(A)	Uni joint transformer	
	(B)	Union junction transistor	
	(C)	Uni-junctional transistor	
	(D)	None of these	
10	For	oscillator circuit	
	(A)	Input and frequency determining network is required	
	(B)	No input, frequency determining network / tank circuit is required	
	(C)	Input required, feedback not required	
	(D)	No input and feedback	
11	For	amplifier circuit	
	(A)	Input and feedback network is required	
	(B)	Input required, no feedback required	
	(C)	No input required, feedback required	
	(D)	No input and feedback	
12	In o	scillator the negative feedback is used for	
	(A)	Increasing the output amplitude	
	(A) (B)	Increasing the output amplitude Decreasing the output amplitude	
	` _	·	
	(B)	Decreasing the output amplitude	

13	I_{DSS} is the current from drain to source with shorted gate. Since loss is measured with the shorted gate it is the drain current you can get with		
		nal operation of the JFET. All other gate voltages are negative and result drain current.	
	(A)	Maximum, Less	
	(B)	Less, Maximum	
	(C)	Minimum, Less	
	(D)	Maximum, Large	
14	The	E-MOSFET operates in the mode only. This kind of MOSFET	
	is im	portant in digital circuit. It is also known as normally MOSFET.	
	(A)	Enhancement, off	
	(B)	De-enhancement, off	
	(C)	Enhancement, on	
	(D)	Only enhancement, on	
15	If tra	ansistors $\alpha_{dc} = 0.98$, the value of β_{dc}	
	(A)	49	
	(B)	.49	
	(C)	.049	
	(D)	.0049	
16	If tra	ansistors β_{dc} =100, then value of α_{dc}	
	(A)	.099	
	(B)	.99	
	(C)	9.9	
	(D)	99	
17	The	α (dc alpha) of a transistor equal the ratio of current to current, and β (dc Beta) equals the ratio of current to	
	curre	ent.	
	(A)	Collector to emitter and collector to base	
	(B)	Collector to base and collector to emitter	
	(C)	Both of these	
	(D)	None of the these	

18	remains is called equivalent circuit. If you reduce all sources to
	zero and short all coupling and by-pass capacitors, the circuit that remains
	is the equivalent circuit.
	(A) dc, ac
	(B) ac, dc
	(C) Transient, steady
	(D) Small signal, Large signal
	(b) Simuli digital, Eurge digital
19	A by-pass capacitor is similar to coupling capacitor except that it couples an
	ungrounded points to a point. A by-pass capacitor produces an ac
	(A) Ground, Grounded
	(B) Grounded, Ground
	(C) Supply, Ground
	(D) Grounded, Supply
20	You multiply individual β 's to get the overall β of a pair. If β_1 is
	50 and β_2 is 100 then β equals
	(A) Darlington, 500
	(B) Darlington, 5000
	(C) Coupling, 5000
	(D) Decoupling, 5000
21	When the collector is at ac ground is called a grounded collector or
	amplifier, stepping up the impedence is the main reason for using
	CC amplifier, also known as (A) Emitter-Follower, Common collector
	(B) Common base, emitter follower(C) Common emitter emitter follower
	(D) Common collector, emitter-follower
22	The ac collector voltage is 180° out of face with the ac base voltage. This
	inversion between base and collector happens in all base driven
	amplifiers. The phase of the emitter voltage is the same as the phase of
	ac voltage.
	(A) Phase, base
	(B) Face, Phase
	(C) Base, Phase
	(D) None of thse

6

[Contd...

DPP-2997_A]

23	In JFET the change in drain current of 0.2 mA and corresponding change of 0.001V, then $\boldsymbol{g}_{\rm m}$ is		ge of
	(A)	$0.0002 \mu s$	
	(B)	$2000 \mu s$	
	(C)	$200 \mu s$	
	(D)	$20 \mu s$	
24	no ir	quicent collector current and voltage are the I_C and V_{CE} when the nput You can determine quiescent current and voltage from equivalent circuit. V_{CEQ} represent the collector to emitter vol ac signal.	the
	(A)	Signal, dc, No	
	(B)	Signal, ac, with	
	(C)	Signal, ac, No	
	(D)	None of these	
25	Because the gate is insulated from the channel, a mosfet is also known as not the mode. This type of MOSFET is also known as not MOSFET.		node
	(A)	Insulated-gate, ehnahcement, Off	
	(B)	Floating-gate, Depletion On	
	(C)	Insulated-Gate Depletion, On	
	(D)	Floating-gate, Depletion On and Insulated-Gate Depletion, On	
DPP-	-2997_	_A] 7 [Con	ıtd

is biased and whereas the base is biased. The crucial differe means the JFET is a controlled device. (A) Forward, Reverse, Current (B) Reverse, Forward, Voltage (C) Forward, Reverse, Voltage (D) Forward, Forward, Voltage 27 The three part of a JFET is the source, the and the ? field effect is related to the layer around each pn junction. ? more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g _m = 75 μs then what is r _d ? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ (D) 13.3 kΩ	26	The	tey difference between a JFET and a bipolar transistor is this: the gate	
 (A) Forward, Reverse, Current (B) Reverse, Forward, Voltage (C) Forward, Reverse, Voltage (D) Forward, Forward, Voltage 27 The three part of a JFET is the source, the and the The field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g_m = 75 μs then what is r_d? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ 		is	biased and whereas the base is biased. The crucial difference	
 (B) Reverse, Forward, Voltage (C) Forward, Reverse, Voltage (D) Forward, Forward, Voltage 27 The three part of a JFET is the source, the and the The field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g_m = 75 μs then what is r_d? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ 		mear	ns the JFET is a controlled device.	
 (C) Forward, Reverse, Voltage (D) Forward, Forward, Voltage 27 The three part of a JFET is the source, the and the The field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g_m = 75 μs then what is r_d? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ 		(A)	Forward, Reverse, Current	
 (D) Forward, Forward, Voltage 27 The three part of a JFET is the source, the and the The field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g_m = 75 μs then what is r_d? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ 		(B)	Reverse, Forward, Voltage	
 The three part of a JFET is the source, the and the The field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is g_m = 75 μs then what is r_d? (A) 133 kΩ (B) 1.33 kΩ (C) 1330 kΩ 		(C)	Forward, Reverse, Voltage	
field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) 133 $k\Omega$ (B) 1.33 $k\Omega$ (C) 1330 $k\Omega$		(D)	Forward, Forward, Voltage	
field effect is related to the layer around each pn junction. The more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) 133 $k\Omega$ (B) 1.33 $k\Omega$ (C) 1330 $k\Omega$				
more negative the gate voltage, the the drain current. (A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) 133 $k\Omega$ (B) 1.33 $k\Omega$	2 7	The	three part of a JFET is the source, the and the The	
(A) Gate, Drain P-type, Smaller (B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) $133 k\Omega$ (B) $1.33 k\Omega$ (C) $1330 k\Omega$		field	effect is related to the layer around each pn junction. The	
(B) Gate, Drain, n-tye, Smaller (C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) $133 k\Omega$ (B) $1.33 k\Omega$ (C) $1330 k\Omega$		more	e negative the gate voltage, the the drain current.	
(C) Gate, Drain, Depletion, Smaller (D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) $133 k\Omega$ (B) $1.33 k\Omega$ (C) $1330 k\Omega$		(A)	Gate, Drain P-type, Smaller	
(D) Gate, Drain, Depletion, Larger 28 Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) 133 $k\Omega$ (B) 1.33 $k\Omega$ (C) 1330 $k\Omega$		(B)	Gate, Drain, n-tye, Smaller	
Data sheet of JFET is $g_m = 75 \mu s$ then what is r_d ? (A) $133 k\Omega$ (B) $1.33 k\Omega$ (C) $1330 k\Omega$		(C)	Gate, Drain, Depletion, Smaller	
(A) $133 \ k\Omega$ (B) $1.33 \ k\Omega$ (C) $1330 \ k\Omega$		(D)	Gate, Drain, Depletion, Larger	
(A) $133 \ k\Omega$ (B) $1.33 \ k\Omega$ (C) $1330 \ k\Omega$				
(B) 1.33 $k\Omega$ (C) 1330 $k\Omega$	28	Data	sheet of JFET is $g_m = 75 \mu s$ then what is r_d ?	
(C) 1330 $k\Omega$		(A)	133 $k\Omega$	
		(B)	$1.33 \ k\Omega$	
(D) 13.3 $k\Omega$		(C)	1330 $k\Omega$	
		(D)	13.3 $k\Omega$	